473 research outputs found

    BRST quantization of quasi-symplectic manifolds and beyond

    Full text link
    We consider a class of \textit{factorizable} Poisson brackets which includes almost all reasonable Poisson structures. A particular case of the factorizable brackets are those associated with symplectic Lie algebroids. The BRST theory is applied to describe the geometry underlying these brackets as well as to develop a deformation quantization procedure in this particular case. This can be viewed as an extension of the Fedosov deformation quantization to a wide class of \textit{irregular} Poisson structures. In a more general case, the factorizable Poisson brackets are shown to be closely connected with the notion of nn-algebroid. A simple description is suggested for the geometry underlying the factorizable Poisson brackets basing on construction of an odd Poisson algebra bundle equipped with an abelian connection. It is shown that the zero-curvature condition for this connection generates all the structure relations for the nn-algebroid as well as a generalization of the Yang-Baxter equation for the symplectic structure.Comment: Journal version, references and comments added, style improve

    Higher order relations in Fedosov supermanifolds

    Full text link
    Higher order relations existing in normal coordinates between affine extensions of the curvature tensor and basic objects for any Fedosov supermanifolds are derived. Representation of these relations in general coordinates is discussed.Comment: 11 LaTex pages, no figure

    Fedosov Quantization of Lagrange-Finsler and Hamilton-Cartan Spaces and Einstein Gravity Lifts on (Co) Tangent Bundles

    Full text link
    We provide a method of converting Lagrange and Finsler spaces and their Legendre transforms to Hamilton and Cartan spaces into almost Kaehler structures on tangent and cotangent bundles. In particular cases, the Hamilton spaces contain nonholonomic lifts of (pseudo) Riemannian / Einstein metrics on effective phase spaces. This allows us to define the corresponding Fedosov operators and develop deformation quantization schemes for nonlinear mechanical and gravity models on Lagrange- and Hamilton-Fedosov manifolds.Comment: latex2e, 11pt, 35 pages, v3, accepted to J. Math. Phys. (2009

    Non-Abelian Conversion and Quantization of Non-scalar Second-Class Constraints

    Full text link
    We propose a general method for deformation quantization of any second-class constrained system on a symplectic manifold. The constraints determining an arbitrary constraint surface are in general defined only locally and can be components of a section of a non-trivial vector bundle over the phase-space manifold. The covariance of the construction with respect to the change of the constraint basis is provided by introducing a connection in the ``constraint bundle'', which becomes a key ingredient of the conversion procedure for the non-scalar constraints. Unlike in the case of scalar second-class constraints, no Abelian conversion is possible in general. Within the BRST framework, a systematic procedure is worked out for converting non-scalar second-class constraints into non-Abelian first-class ones. The BRST-extended system is quantized, yielding an explicitly covariant quantization of the original system. An important feature of second-class systems with non-scalar constraints is that the appropriately generalized Dirac bracket satisfies the Jacobi identity only on the constraint surface. At the quantum level, this results in a weakly associative star-product on the phase space.Comment: LaTeX, 21 page
    corecore