3,833 research outputs found

    Hybrid RHF/MP2 geometry optimizations with the Effective Fragment Molecular Orbital Method

    Get PDF
    The frozen domain effective fragment molecular orbital method is extended to allow for the treatment of a single fragment at the MP2 level of theory. The approach is applied to the conversion of chorismate to prephenate by chorismate mutase, where the substrate is treated at the MP2 level of theory while the rest of the system is treated at the RHF level. MP2 geometry optimization is found to lower the barrier by up to 3.5 kcal/mol compared to RHF optimzations and ONIOM energy refinement and leads to a smoother convergence with respect to the basis set for the reaction profile. For double zeta basis sets the increase in CPU time relative to RHF is roughly a factor of two.Comment: 11 pages, 3 figure

    Hyperspherical Treatment of Strongly-Interacting Few-Fermion Systems in One Dimension

    Full text link
    We examine a one-dimensional two-component fermionic system in a trap, assuming that all particles have the same mass and interact through a strong repulsive zero-range force. First we show how a simple system of three strongly interacting particles in a harmonic trap can be treated using the hyperspherical formalism. Next we discuss the behavior of the energy for the N-body system.Comment: 5 pages. Original paper for EPJ ST in connection with the workshop BEC2014 28-31 May 2014 in Levico Terme, Ital

    Occurrence conditions for two-dimensional Borromean systems

    Full text link
    We search for Borromean three-body systems of identical bosons in two dimensional geometry, i.e. we search for bound three-boson system without bound two-body subsystems. Unlike three spatial dimensions, in two-dimensional geometry the two- and three-body thresholds often coincide ruling out Borromean systems. We show that Borromean states can only appear for potentials with substantial attractive and repulsive parts. Borromean states are most easily found when a barrier is present outside an attractive pocket. Extensive numerical search did not reveal Borromean states for potentials without an outside barrier. We outline possible experimental setups to observe Borromean systems in two spatial dimensions.Comment: 9 pages, 5 figures, published versio

    Three-Body Halos in Two Dimensions

    Get PDF
    A method to study weakly bound three-body quantum systems in two dimensions is formulated in coordinate space for short-range potentials. Occurrences of spatially extended structures (halos) are investigated. Borromean systems are shown to exist in two dimensions for a certain class of potentials. An extensive numerical investigation shows that a weakly bound two-body state gives rise to two weakly bound three-body states, a reminiscence of the Efimov effect in three dimensions. The properties of these two states in the weak binding limit turn out to be universal. PACS number(s): 03.65.Ge, 21.45.+v, 31.15.Ja, 02.60NmComment: 9 pages, 2 postscript figures, LaTeX, epsf.st
    • …
    corecore