4,475 research outputs found
Two-color interference stabilization of atoms
The effect of interference stabilization is shown to exist in a system of two
atomic levels coupled by a strong two-color laser field, the two frequencies of
which are close to a two-photon Raman-type resonance between the chosen levels,
with open channels of one-photon ionization from both of them. We suggest an
experiment, in which a rather significant (up to 90%) suppression of ionization
can take place and which demonstrates explicitly the interference origin of
stabilization. Specific calculations are made for H and He atoms and optimal
parameters of a two-color field are found. The physics of the effect and its
relation with such well-known phenomena as LICS and population trapping in a
three-level system are discussed.Comment: the paper includes 1 TeX file and 16 picture
Computations of Three-Body Continuum Spectra
We formulate a method to solve the coordinate space Faddeev equations for
positive energies. The method employs hyperspherical coordinates and analytical
expressions for the effective potentials at large distances. Realistic
computations of the parameters of the resonances and the strength functions are
carried out for the Borromean halo nucleus 6He (n+n+alpha) for J = 0+, 0-, 1+,
1-, 2+,2-. PACS numbers: 21.45.+v, 11.80.Jy, 31.15.Ja, 21.60.GxComment: 10 pages, 3 postscript figures, LaTeX, epsf.sty, corrected misprints
in the caption of Fig.
Three-Body Halos in Two Dimensions
A method to study weakly bound three-body quantum systems in two dimensions
is formulated in coordinate space for short-range potentials. Occurrences of
spatially extended structures (halos) are investigated. Borromean systems are
shown to exist in two dimensions for a certain class of potentials. An
extensive numerical investigation shows that a weakly bound two-body state
gives rise to two weakly bound three-body states, a reminiscence of the Efimov
effect in three dimensions. The properties of these two states in the weak
binding limit turn out to be universal.
PACS number(s): 03.65.Ge, 21.45.+v, 31.15.Ja, 02.60NmComment: 9 pages, 2 postscript figures, LaTeX, epsf.st
Three-body properties of low-lying Be resonances
We compute the three-body structure of the lowest resonances of Be
considered as two neutrons around an inert Be core. This is an extension
of the bound state calculations of Be into the continuum spectrum. We
investigate the lowest resonances of angular momenta and parities, ,
and . Surprisingly enough, they all are naturally occurring in
the three-body model. We calculate bulk structure dominated by small distance
properties as well as decays determined by the asymptotic large-distance
structure. Both and have two-body Be-neutron d-wave
structure, while has an even mixture of and d-waves. The
corresponding relative neutron-neutron partial waves are distributed among ,
, and d-waves. The branching ratios show different mixtures of one-neutron
emission, three-body direct, and sequential decays. We argue for spin and
parities, , and , to the resonances at 0.89, 2.03, 5.13,
respectively. The computed structures are in agreement with existing reaction
measurements.Comment: To be published in Physical Review
Bound States and Universality in Layers of Cold Polar Molecules
The recent experimental realization of cold polar molecules in the rotational
and vibrational ground state opens the door to the study of a wealth of
phenomena involving long-range interactions. By applying an optical lattice to
a gas of cold polar molecules one can create a layered system of planar traps.
Due to the long-range dipole-dipole interaction one expects a rich structure of
bound complexes in this geometry. We study the bilayer case and determine the
two-body bound state properties as a function of the interaction strength. The
results clearly show that a least one bound state will always be present in the
system. In addition, bound states at zero energy show universal behavior and
extend to very large radii. These results suggest that non-trivial bound
complexes of more than two particles are likely in the bilayer and in more
complicated chain structures in multi-layer systems.Comment: 6 pages, 5 figures. Revised version to be publishe
Packet narrowing and quantum entanglement in photoionization and photodissociation
The narrowing of electron and ion wave packets in the process of
photoionization is investigated, with the electron-ion recoil fully taken into
account. Packet localization of this type is directly related to entanglement
in the joint quantum state of electron and ion, and to Einstein-Podolsky-Rosen
localization. Experimental observation of such packet-narrowing effects is
suggested via coincidence registration by two detectors, with a fixed position
of one and varying position of the other. A similar effect, typically with an
enhanced degree of entanglement, is shown to occur in the case of
photodissociation of molecules
- âŠ