5,686 research outputs found
The rate of synthesis and decomposition of tissue proteins in hypokinesia and increased muscular activity
During hypokinesia and physical loading (swimming) of rats, the radioactivity of skeletal muscle, liver, kidney, heart, and blood proteins was determined after administration of radioactive amino acids. Tissue protein synthesis decreased during hypokinesia, and decomposition increased. Both synthesis and decomposition increased during physical loading, but anabolic processes predominated in the total tissue balance. The weights of the animals decreased in hypokinesia and increased during increased muscle activity
Two-color interference stabilization of atoms
The effect of interference stabilization is shown to exist in a system of two
atomic levels coupled by a strong two-color laser field, the two frequencies of
which are close to a two-photon Raman-type resonance between the chosen levels,
with open channels of one-photon ionization from both of them. We suggest an
experiment, in which a rather significant (up to 90%) suppression of ionization
can take place and which demonstrates explicitly the interference origin of
stabilization. Specific calculations are made for H and He atoms and optimal
parameters of a two-color field are found. The physics of the effect and its
relation with such well-known phenomena as LICS and population trapping in a
three-level system are discussed.Comment: the paper includes 1 TeX file and 16 picture
Classification of three-body quantum halos
The different kinds of behaviour of three-body systems in the weak binding
limit are classified with specific attention to the transition from a true
three-body system to an effective two-body system. For weakly bound Borromean
systems approaching the limit of binding we show that the size-binding energy
relation is an almost universal function of the three s-wave scattering lengths
measured in units of a hyperradial scaling parameter defined as a mass weighted
average of two-body equivalent square well radii. We explain why three-body
halos follow this curve and why systems appearing above reveal two-body
substructures. Three-body quantum halos 2-3 times larger than the limit set by
zero hypermoment are possible
The Continuum Structure of the Borromean Halo Nucleus 11Li
We solve the Faddeev equations for 11Li (n+n+9Li) using hyperspherical
coordinates and analytical expressions for distances much larger than the
effective ranges of the interactions. The lowest resonances are found at 0.65
MeV (1/2+, 3/2+, 5/2+) and 0.89 MeV (3/2+, 3/2-) with widths of about 0.35 MeV.
A number of higher-lying broader resonances are also obtained and related to
the Efimov effect. The dipole strength function and the Coulomb dissociation
cross section are also calculated. PACS numbers: 21.45.+v, 11.80.Jy, 21.60.GxComment: 10 pages, LaTeX, 3 postscript figures, psfig.st
- …