52 research outputs found

    Association of PIP4K2A Polymorphisms with Alcohol Use Disorder

    Get PDF
    Background: Alcohol use disorder (AUD) not only influences individuals and families but also has a lasting social impact on communities at the national level. Dopaminergic neurotransmission is involved in excessive alcohol consumption. Phosphatidylinositol-5-phosphate-4-kinase type 2 α (PIP4K2A) plays an important role in the regulation of ascending dopamine pathways. In this study; we determined possible associations between nine polymorphisms in PIP4K2A and AUD in Russian men. Methods: 279 Russian men with AUD were investigated. The control group consisted of 222 healthy men from the general Russian population. Genotyping of DNA samples for nine polymorphic variants of PIP4K2A was carried out by the Applied Biosystems™ QuantStudio™ 5 Real-Time PCR System with use of the TaqMan1 Validated SNP Genotyping Assay (Applied Biosystems; CIIIA). Results: Carriage of the PIP4K2A rs2230469*TT/T genotype/allele was a relative risk factor for developing AUD in men (p = 0.026 and p = 0.0084 accordingly). Moreover; men with AUD had a higher frequency of PIP4K2A rs746203*T allele (p = 0.023) compared to healthy men. Conclusions: For the first time; we demonstrated different PIP4K2A polymorphisms to be associated with AUD presumably due to dopamine system modulation resulting from regulation of the lateral habenula

    Study of early onset schizophrenia:Associations of GRIN2A and GRIN2B polymorphisms

    Get PDF
    Background: Schizophrenia is a complex mental disorder with a high heritability. Dysfunction of the N-methyl-D-aspartate (NMDA)-type glutamate receptors may be involved in the pathogenesis of schizophrenia. In this study, we examined the contribution of GRIN2A and GRIN2B (Glutamate Ionotropic Receptor NMDA Type Subunit 2A/2B) polymorphisms to the clinical features of schizophrenia, such as the leading symptoms, the type of course, and the age of onset. Methods: A population of 402 Russian patients with schizophrenia from the Siberian region was investigated. Genotyping of seventeen single-nucleotide polymorphisms (SNPs) in GRIN2A and GRIN2B was performed using QuantStudio™ 3D Digital PCR System Life Technologies amplifier using TaqMan Validated SNP Genotyping Assay kits (Applied Biosystems). The results were analyzed using Chi-square and the Fisher’s exact tests. Results: We found an association of GRIN2A rs7206256 and rs11644461 and GRIN2B rs7313149 with the early onset (before the age of 18 years old) schizophrenia. We did not reveal any associations of GRIN2A and GRIN2B polymorphisms with leading (positive vs. negative) symptoms or type of course (continuous vs. episodic) of schizophrenia. Conclusions: In the study, we confirmed the involvement of the GRIN2A and GRIN2B genes in the early onset of schizophrenia in a Russian population of the Siberian region

    Genetic polymorphisms of PIP5K2A and course of schizophrenia

    Get PDF
    BackgroundSchizophrenia is a severe highly heritable mental disorder. The clinical heterogeneity of schizophrenia is expressed in the difference in the leading symptoms and course of the disease. Identifying the genetic variants that affect clinical heterogeneity may ultimately reveal the genetic basis of the features of schizophrenia and suggest novel treatment targets. PIP5K2A (Phosphatidylinositol-4-Phosphate 5-Kinase Type II Alpha) has been investigated as a potential susceptibility gene for schizophrenia.MethodsIn this work, we studied the possible association between eleven polymorphic variants of PIP5K2A and the clinical features of schizophrenia in a population of 384 white Siberian patients with schizophrenia. Genotyping was carried out on QuantStudio 5 Real-Time PCR System with a TaqMan Validate SNP Genotyping Assay (Applied Biosystems, USA).ResultsPIP5K2A rs8341 (chi (2)=6.559, p=0.038) and rs946961 (chi (2)=5.976, p=0.049) showed significant association with course of schizophrenia (continuous or episodic). The rs8341*CT (OR=1.63, 95% CI: 1.04-2.54) and rs946961*CC (OR=5.17, 95% CI: 1.20-22.21) genotypes were associated with a continuous type of course, while the rs8341*TT genotype (OR=0.53, 95% CI: 0.29-0.97) was associated with an episodic type of course of schizophrenia. Therefore rs8341*TT genotype presumably has protective effect against the more severe continuous course of schizophrenia compared to the episodic one.ConclusionsOur experimental data confirm that PIP5K2A is a genetic factor influencing the type of course of schizophrenia in Siberian population. Disturbances in the phosphatidylinositol pathways may be a possible reason for the transition to a more severe continuous course of schizophrenia

    Association of ANKK1 polymorphism with antipsychotic-induced hyperprolactinemia

    Get PDF
    Objective: Schizophrenia is a severe highly heritable mental disorder. Genetic polymorphisms of dopaminergic pathways are related to pathogenesis of drug response. Hyperprolactinemia (HPRL), a common adverse effect of antipsychotics, is attributed to blockade of dopamine D2 receptors. Ankyrin Repeat and Kinase Domain containing 1 (ANKK1) gene is closely related to Dopamine Receptor D2 type (DRD2) gene functioning. We examined whether the functional polymorphism rs2734849 in the ANKK1 gene is associated with antipsychotic-induced HPRL. Methods: We recruited 446 patients with schizophrenia from among the Russian population of the Siberian region. The polymorphism rs2734849 in the ANKK1 gene was genotyped with The MassARRAY® Analyzer 4 by Agena Bioscience™, using the kit SEQUENOM Consumables iPLEXGold 384. Genotype and allele frequencies were compared between groups of schizophrenia patients with and without HPRL using the χ2 test. Results: A comparison between schizophrenia patients with and without HPRL revealed significantly higher frequency of the C allele of the polymorphic variant rs2734849 in the ANKK1 gene in patients with HPRL as compared to the patients without it (χ2 = 3.70; p =.05; odds ratio [OR] = 1.30 [0.99–1.69]). Conclusion: The functional polymorphism rs2734849 in the ANKK1 gene was associated with HPRL in patients with schizophrenia

    5-Hydroxytryptamine Receptors and Tardive Dyskinesia in Schizophrenia

    Get PDF
    Background Tardive dyskinesia (TD) is a common side effect of antipsychotic treatment. This movement disorder consists of orofacial and limb-truncal components. The present study is aimed at investigating the role of serotonin receptors (HTR) in modulating tardive dyskinesia by genotyping patients with schizophrenia. Methods A set of 29 SNPs of genes of serotonin receptors HTR1A, HTR1B, HTR2A, HTR2C, HTR3A, HTR3B, and HTR6 was studied in a population of 449 Caucasians (226 females and 223 males) with verified clinical diagnosis of schizophrenia (according to ICD-10: F20). Five SNPs were excluded because of low minor allele frequency or for not passing the Hardy-Weinberg equilibrium test. Affinity of antipsychotics to 5-HT2 receptors was defined according to previous publications. Genotyping was carried out with SEQUENOM Mass Array Analyzer 4. Results Statistically significant associations of rs1928040 of HTR2A gene in groups of patients with orofacial type of TD and total diagnosis of TD was found for alleles, and a statistical trend for genotypes. Moreover, statistically significant associations were discovered in the female group for rs1801412 of HTR2C for alleles and genotypes. Excluding patients who used HTR2A, respectively, HTR2C antagonists changed little to the associations of HTR2A polymorphisms, but caused a major change of the magnitude of the association of HTR2C variants. Due to the low patient numbers, these sub-analyses did not have significant results. Conclusion We found significant associations in rs1928040 of HTR2A and for rs1801412 of X-bound HTR2C in female patients. The associations were particularly related to the orofacial type of TD. Excluding patients using relevant antagonists particularly affected rs1801412, but not rs1928040-related associations. This suggest that rs1801412 is directly or indirectly linked to the functioning of HTR2C. Further study of variants of the HTR2C gene in a larger group of male patients who were not using HTR2C antagonists is necessary in order to verify a possible functional role of this receptor

    Association of Cholinergic Muscarinic M4 Receptor Gene Polymorphism with Schizophrenia

    Get PDF
    Background: Previous studies have linked muscarinic M4 receptors (CHRM4) to schizophrenia. Specifically, the rs2067482 polymorphism was found to be highly associated with this disease. Purpose: To test whether rs2067482 and rs72910092 are potential risk factors for schizophrenia and/or pharmacogenetic markers for antipsychotic-induced tardive dyskinesia. Patients and Methods: We genotyped DNA of 449 patients with schizophrenia and 134 healthy controls for rs2067482 and rs72910092 polymorphisms of the CHRM4 gene with the use of the MassARRAY® System by Agena Bioscience. Mann–Whitney test was used to compare qualitative traits and χ2 test was used for categorical traits. Results: The frequency of genotypes and alleles of rs72910092 did not differ between patients with schizophrenia and control subjects. We did not reveal any statistical differences for both rs2067482 and rs72910092 between schizophrenia patients with and without tardive dyskinesia. The frequency of the C allele of the polymorphic variant rs2067482 was significantly higher in healthy persons compared to patients with schizophrenia (OR=0.51, 95% CI [0.33–0.80]; p=0.003). Accordingly, the CC genotype was found significantly more often in healthy persons compared to patients with schizophrenia (OR=0.49, 95% CI [0.31–0.80]; p=0.010). Conclusion: Our study found the presence of the minor allele (T) of rs2067482 variant being associated with schizophrenia. We argue that the association of rs2067482 with schizophrenia may be via its regulatory effect on some other gene with protein kinase C and casein Kknase substrate in neurons 3 (PACSIN3) as a possible candidate. Neither rs2067482 nor rs72910092 is associated with tardive dyskinesia

    Genes of the Glutamatergic System and Tardive Dyskinesia in Patients with Schizophrenia

    Get PDF
    Background: Tardive dyskinesia (TD) is an extrapyramidal side effect of the long-term use of antipsychotics. In the present study, the role of glutamatergic system genes in the pathogenesis of total TD, as well as two phenotypic forms, orofacial TD and limb-truncal TD, was studied. Methods: A set of 46 SNPs of the glutamatergic system genes (GRIN2A, GRIN2B, GRIK4, GRM3, GRM7, GRM8, SLC1A2, SLC1A3, SLC17A7) was studied in a population of 704 Caucasian patients with schizophrenia. Genotyping was performed using the MassARRAY Analyzer 4 (Agena Bioscience™). Logistic regression analysis was performed to test for the association of TD with the SNPs while adjusting for confounders. Results: No statistically significant associations between the SNPs and TD were found after adjusting for multiple testing. Since three SNPs of the SLC1A2 gene demonstrated nominally significant associations, we carried out a haplotype analysis for these SNPs. This analysis identified a risk haplotype for TD comprising CAT alleles of the SLC1A2 gene SNPs rs1042113, rs10768121, and rs12361171. Nominally significant associations were identified for SLC1A3 rs2229894 and orofacial TD, as well as for GRIN2A rs7192557 and limb-truncal TD. Conclusions: Genes encoding for mGlu3, EAAT2, and EAAT1 may be involved in the development of TD in schizophrenia patients

    Genetic Polymorphisms of 5-HT Receptors and Antipsychotic-Induced Metabolic Dysfunction in Patients with Schizophrenia

    Get PDF
    Background: Antipsychotic-induced metabolic syndrome (MetS) is a multifactorial disease with a genetic predisposition. Serotonin and its receptors are involved in antipsychotic-drug-induced metabolic disorders. The present study investigated the association of nine polymorphisms in the four 5-hydroxytryptamine receptor (HTR) genes HTR1A, HTR2A, HTR3A, and HTR2C and the gene encoding for the serotonin transporter SLC6A4 with MetS in patients with schizophrenia. Methods: A set of nine single-nucleotide polymorphisms of genes of the serotonergic system was investigated in a population of 475 patients from several Siberian regions (Russia) with a clinical diagnosis of schizophrenia. Genotyping was performed and the results were analyzed using chi-square tests. Results: Polymorphic variant rs521018 (HTR2C) was associated with higher body mass index in patients receiving long-term antipsychotic therapy, but not with drug-induced metabolic syndrome. Rs1150226 (HTR3A) was also associated but did not meet Hardy-Weinberg equilibrium. Conclusions: Our results indicate that allelic variants of HTR2C genes may have consequences on metabolic parameters. MetS may have too complex a mechanistic background to be studied without dissecting the syndrome into its individual (causal) components

    Gene Polymorphisms of Hormonal Regulators of Metabolism in Patients with Schizophrenia with Metabolic Syndrome

    Get PDF
    Background: Metabolic syndrome (MetS) is a common complication of long-term treatment of persons with schizophrenia taking (atypical) antipsychotics. In this study, we investigated the existence of an association with polymorphisms of genes for four hormones that regulate energy metabolism. Methods: We recruited 517 clinically admitted white patients (269M/248F) with a verified diagnosis of schizophrenia (ICD-10) and with a stable physical condition. Participants were classified for having or not having MetS and genotyped for 20 single-nucleotide polymorphisms (SNPs) in the genes encoding insulin-induced gene 2 (INSIG2), ghrelin (GHRL), leptin (LEP), and leptin receptor (LEPR). Results: The 139 patients (26.9%) with MetS were significantly more likely to be women, older, and ill longer, and had a larger body mass index (BMI). Four polymorphisms (rs10490624, rs17587100, rs9308762, and rs10490816) did not meet the Hardy–Weinberg equilibrium (HWE) criterion and were excluded. Only genotypes and alleles of the rs3828942 of LEP gene (chi2 = 7.665, p = 0.022; chi2 = 5.136, p = 0.023) and the genotypes of the rs17047718 of INSIG2 gene (chi2 = 7.7, p = 0.021) had a significant association with MetS. Conclusions: The results of our study suggest that the LEP and INSIG2 genes play a certain causal role in the development of MetS in patients with schizophrenia
    corecore