48 research outputs found

    Laboratory astrophysics under the ultraviolet, visible, and gravitational astrophysics research program: Oscillator strengths for ultraviolet atomic transitions

    Get PDF
    The conditions within astrophysical environments can be derived from observational data on atomic and molecular lines. For instance, the density and temperature of the gas are obtained from relative populations among energy levels. Information on populations comes about only when the correspondence between line strength and abundance is well determined. The conversion from line strength to abundance involves knowledge of meanlives and oscillator strengths. For many ultraviolet atomic transitions, unfortunately, the necessary data are either relatively imprecise or not available. Because of the need for more and better atomic oscillator strengths, our program was initiated. Through beam-foil spectroscopy, meanlives of ultraviolet atomic transitions are studied. In this technique, a nearly isotopically pure ion beam of the desired element is accelerated. The beam passes through a thin carbon foil (2 mg/cu cm), where neutralization, ionization, and excitation take place. The dominant process depends on the energy of the beam. Upon exiting the foil, the decay of excited states is monitored via single-photon-counting techniques. The resulting decay curve yields a meanlife. The oscillator strength is easily obtained from the meanlife when no other decay channels are presented. When other channels are present, additional measurements or theoretical calculations are performed in order to extract an oscillator strength. During the past year, three atomic systems have been studied experimentally and/or theoretically; they are Ar, I, Cl I, and N II. The results for the first two are important for studies of interstellar space, while the work on N II bears on processes occurring in planetary atmospheres

    Laboratory Astrophysics Under the Ultraviolet, Visible, and Gravitational Astrophysics Research Program

    Get PDF
    Space-borne facilities, such as the Hubble Space Telescope, the recent ORFEUS-SPAS II Shuttle mission, and the soon-to-be launched Far Ultraviolet Spectroscopic Explorer, are providing data at ultraviolet wavelengths of unprecedented quality for spectroscopic studies of many astronomical environments. The first step in the analysis of these data involves the derivation of abundances. Obtaining accurate abundances is possible only when the correspondence between line strength and abundance is well known. The conversion of line strength to abundance relies on knowledge of transition probabilities and oscillator strengths, often obtained from mean lives branching fractions. For many ultraviolet transitions, the necessary atomic and molecular data are either relatively imprecise or not available. Our program addresses this need for accurate oscillator strengths; our focus is on transitions that probe the nature and composition of the interstellar medium

    Atomic and Molecular Data for Interstellar Studies: A Status Report

    Get PDF
    Most interstellar species have a large fraction of their electronic transitions at far ultraviolet wavelengths. Observations at these wavelengths reveal spectra rich in absorption lines seen against the continuum of a background source, such as a hot star in our Galaxy, a supernova in a nearby galaxy, or even a bright nucleus in an active galaxy. Most of the observations continue to be made with space-borne instruments, but recent work includes measurements of extragalactic material at large redshifts obtained at high resolution with large ground-based telescopes (e.g., the Keck Telescope). The combination of precise experimental oscillator strengths, large-scale computations, and astronomical spectra with high signal-to-noise ratios are yielding a set of self-consistent-values that span a range in strength in excess of 100 for more and more species. The large range is important for studies involving the different environments probed by the various background sources. This review highlights recent work on the atomic species. Si II, S I, and Fe II, and on the molecules, CO and C2

    Physical Conditions in Shocked Interstellar Gas Interacting with the Supernova Remnant IC 443

    Full text link
    We present the results of a detailed investigation into the physical conditions in interstellar material interacting with the supernova remnant IC 443. Our analysis is based on a comprehensive examination of high-resolution far-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope of two stars behind IC 443. One of our targets (HD 43582) probes gas along the entire line of sight through the supernova remnant, while the other (HD 254755) samples material located ahead of the primary supernova shock front. We identify low velocity quiescent gas in both directions and find that the densities and temperatures in these components are typical of diffuse atomic and molecular clouds. Numerous high velocity components are observed in the absorption profiles of neutral and singly-ionized atomic species toward HD 43582. These components exhibit a combination of greatly enhanced thermal pressures and significantly reduced dust-grain depletions. We interpret this material as cooling gas in a recombination zone far downstream from shocks driven into neutral gas clumps. The pressures derived for a group of ionized gas components at high positive velocity toward HD 43582 are lower than those of the other shocked components, pointing to pressure inhomogeneities across the remnant. A strong very high velocity component near -620 km/s is seen in the absorption profiles of highly-ionized species toward HD 43582. The velocity of this material is consistent with the range of shock velocities implied by observations of soft thermal X-ray emission from IC 443. Moderately high-velocity gas toward HD 254755 may represent shocked material from a separate foreground supernova remnant.Comment: 88 pages, 27 figures, accepted for publication in Ap
    corecore