9 research outputs found

    On the importance of measuring accurately LDOS maps using scanning tunneling spectroscopy in materials presenting atom-dependent charge order: the case of the correlated Pb/Si(111) single atomic layer

    Full text link
    We show how to properly extract the local charge order in two-dimensional materials from scanning tunneling microscopy/spectroscopy (STM/STS) measurements. When the charge order presents spatial variations at the atomic scale inside the unit cell and is energy dependent, particular care should be taken. In such cases the use of the lock-in technique, while acquiring an STM topography in closed feedback loop, leads to systematically incorrect dI/dV measurements giving a false local charge order. A correct method is either to perform a constant height measurement or to perform a full grid of dI/dV(V) spectroscopies, using a bias voltage setpoint outside the material bandwidth where the local density-of-states (LDOS) is spatially homogeneous. We take as a paradigmatic example of two-dimensional material the 1/3 single-layer Pb/Si(111). As large areas of this phase cannot be grown, charge ordering in this system is not accessible to angular resolved photoemission or grazing x-ray diffraction. Previous investigations by STM/STS supplemented by {\it ab initio} Density Functional Theory (DFT) calculations concluded that this material undergoes a phase transition to a low-temperature 3×33\times 3 reconstruction where one Pb atom moves up, the two remaining Pb atoms shifting down. A third STM/STS study by Adler {\it et al.} [PRL 123, 086401 (2019)] came to the opposite conclusion, i.e. that two Pb atoms move up, while one Pb atom shifts down. This latter erroneous conclusion comes from a misuse of the lock-in technique. In contrast, using a full grid of dI/dV(V) spectroscopy measurements, we show that the energy-dependent LDOS maps agree very well with state-of-the-art DFT calculations confirming the one-up two-down charge ordering. This structural and charge re-ordering in the 3×33\times 3 unit cell is equally driven by electron-electron interactions and the coupling to the substrate.Comment: 11 pages, 3 figure

    Chiral Spin Texture in the Charge-Density-Wave Phase of the Correlated Metallic Pb/Si(111) Monolayer

    No full text
    We investigate the 1/3 monolayer alpha-Pb/Si(111)) surface by scanning tunneling spectroscopy (STS) and fully relativistic first-principles calculations. We study both the high-temperature root 3 x root/3 and low-temperature 3 x3 reconstructions and show that, in both phases, the spin-orbit interaction leads to an energy splitting as large as 25% of the valence-band bandwidth. Relativistic effects, electronic correlations, and Pb-substrate interaction cooperate to stabilize a correlated low-temperature paramagnetic phase with well-developed lower and upper Hubbard bands coexisting with 3 x 3 periodicity. By comparing the Fourier transform of STS conductance maps at the Fermi level with calculated quasiparticle interference from nonmagnetic impurities, we demonstrate the occurrence of two large hexagonal Fermi sheets with in-plane spin polarizations and opposite helicities

    Colossal Permittivity Materials as Superior Dielectrics for Diverse Applications

    No full text
    corecore