2,415 research outputs found

    Gaussian potentials facilitate access to quantum Hall states in rotating Bose gases

    Full text link
    Through exact numerical diagonalization for small numbers of atoms, we show that it is possible to access quantum Hall states in harmonically confined Bose gases at rotation frequencies well below the centrifugal limit by applying a repulsive Gaussian potential at the trap center. The main idea is to reduce or eliminate the effective trapping frequency in regions where the particle density is appreciable. The critical rotation frequency required to obtain the bosonic Laughlin state can be fixed at an experimentally accessible value by choosing an applied Gaussian whose amplitude increases linearly with the number of atoms while its width increases as the square root.Comment: 4 pages, 4 figure

    Topological Entropy of Quantum Hall States in Rotating Bose Gases

    Full text link
    Through exact numerical diagonalization, the von Neumann entropy is calculated for the Laughlin and Pfaffian quantum Hall states in rotating interacting Bose gases at zero temperature in the lowest Landau level limit. The particles comprising the states are indistinguishable, so the required spatial bipartitioning is effected by tracing over a subset of single-particle orbitals. The topological entropy is then extracted through a finite-size scaling analysis. The results for the Laughlin and the Pfaffian states agree with the expected values of ln2\ln\sqrt{2} and ln4\ln\sqrt{4}, respectively.Comment: 4 pages, 4 figure

    Testing equivalence of pure quantum states and graph states under SLOCC

    Full text link
    A set of necessary and sufficient conditions are derived for the equivalence of an arbitrary pure state and a graph state on n qubits under stochastic local operations and classical communication (SLOCC), using the stabilizer formalism. Because all stabilizer states are equivalent to a graph state by local unitary transformations, these conditions constitute a classical algorithm for the determination of SLOCC-equivalence of pure states and stabilizer states. This algorithm provides a distinct advantage over the direct solution of the SLOCC-equivalence condition for an unknown invertible local operator S, as it usually allows for easy detection of states that are not SLOCC-equivalent to graph states.Comment: 9 pages, to appear in International Journal of Quantum Information; Minor typos corrected, updated references

    Rotation of an atomic Bose-Einstein condensate with and without a quantized vortex

    Full text link
    We theoretically examine the rotation of an atomic Bose-Einstein condensate in an elliptical trap, both in the absence and presence of a quantized vortex. Two methods of introducing the rotating potential are considered - adiabatically increasing the rotation frequency at fixed ellipticity, and adiabatically increasing the trap ellipticity at fixed rotation frequency. Extensive simulations of the Gross-Pitaevskii equation are employed to map out the points where the condensate becomes unstable and ultimately forms a vortex lattice. We highlight the key features of having a quantized vortex in the initial condensate. In particular, we find that the presence of the vortex causes the instabilities to shift to lower or higher rotation frequencies, depending on the direction of the vortex relative to the trap rotation.Comment: 15 pages, 8 figure

    Universal quantum computation by discontinuous quantum walk

    Full text link
    Quantum walks are the quantum-mechanical analog of random walks, in which a quantum `walker' evolves between initial and final states by traversing the edges of a graph, either in discrete steps from node to node or via continuous evolution under the Hamiltonian furnished by the adjacency matrix of the graph. We present a hybrid scheme for universal quantum computation in which a quantum walker takes discrete steps of continuous evolution. This `discontinuous' quantum walk employs perfect quantum state transfer between two nodes of specific subgraphs chosen to implement a universal gate set, thereby ensuring unitary evolution without requiring the introduction of an ancillary coin space. The run time is linear in the number of simulated qubits and gates. The scheme allows multiple runs of the algorithm to be executed almost simultaneously by starting walkers one timestep apart.Comment: 7 pages, revte

    Skeleton and fractal scaling in complex networks

    Full text link
    We find that the fractal scaling in a class of scale-free networks originates from the underlying tree structure called skeleton, a special type of spanning tree based on the edge betweenness centrality. The fractal skeleton has the property of the critical branching tree. The original fractal networks are viewed as a fractal skeleton dressed with local shortcuts. An in-silico model with both the fractal scaling and the scale-invariance properties is also constructed. The framework of fractal networks is useful in understanding the utility and the redundancy in networked systems.Comment: 4 pages, 2 figures, final version published in PR

    Weakly Interacting Bose-Einstein Condensates Under Rotation: Mean-field versus Exact Solutions

    Full text link
    We consider a weakly-interacting, harmonically-trapped Bose-Einstein condensed gas under rotation and investigate the connection between the energies obtained from mean-field calculations and from exact diagonalizations in a subspace of degenerate states. From the latter we derive an approximation scheme valid in the thermodynamic limit of many particles. Mean-field results are shown to emerge as the correct leading-order approximation to exact calculations in the same subspace.Comment: 4 pages, RevTex, submitted to PR

    Young people, partner abuse and sexual health: indicators of increased risk

    Get PDF
    Partner abuse (PA) is common among young people, but is often missed by professionals working in health, social care, education and the criminal justice system. This paper explores the types of PA experienced by young people and links with sexual health to see whether there are factors which indicate greater vulnerability to abuse. Young people aged 16 to 20 from across the UK (n=1,754) completed an online survey in 2010‐11. We report experience of emotional, physical and sexual partner abuse and model the associations with demographic and sexual health variables in bivariate analysis using logistic regression. A third of participants reported one or more types of PA within the previous three months, regardless of gender of partner. PA was significantly associated with sexually transmitted infection (Odds Ratios 1.6 and 2.9 for young women and young men respectively), regretted sex (OR 2.7 and 1.9), distress or worry about sex life (OR 2.7 and 4.6), sexual problems, numbers of sexual partners (OR 1.2 for each additional partner), and sexual health service use (for young men) (OR=1.9). These ‘indicators’ may be noticed by professionals who work with young people, and can act as prompts to ask about partner abuse
    corecore