2,917 research outputs found
Radiation Damping and Quantum Excitation for Longitudinal Charged Particle Dynamics in the Thermal Wave Model
On the basis of the recently proposed {\it Thermal Wave Model (TWM) for
particle beams}, we give a description of the longitudinal charge particle
dynamics in circular accelerating machines by taking into account both
radiation damping and quantum excitation (stochastic effect), in presence of a
RF potential well. The longitudinal dynamics is governed by a 1-D
Schr\"{o}dinger-like equation for a complex wave function whose squared modulus
gives the longitudinal bunch density profile. In this framework, the
appropriate {\it r.m.s. emittance} scaling law, due to the damping effect, is
naturally recovered, and the asymptotic equilibrium condition for the bunch
length, due to the competition between quantum excitation (QE) and radiation
damping (RD), is found. This result opens the possibility to apply the TWM,
already tested for protons, to electrons, for which QE and RD are very
important.Comment: 10 pages, plain LaTeX; published in Phys. Lett. A194 (1994) 113-11
Classical and Quantum-like approaches to Charged-Particle Fluids in a Quadrupole
A classical description of the dynamics of a dissipative charged-particle
fluid in a quadrupole-like device is developed. It is shown that the set of the
classical fluid equations contains the same information as a complex function
satisfying a Schrodinger-like equation in which Planck's constant is replaced
by the time-varying emittance, which is related to the time-varying temperature
of the fluid. The squared modulus and the gradient of the phase of this complex
function are proportional to the fluid density and to the current velocity,
respectively. Within this framework, the dynamics of an electron bunch in a
storage ring in the presence of radiation damping and quantum-excitation is
recovered. Furthermore, both standard and generalized (including dissipation)
coherent states that may be associated with the classical particle fluids are
fully described in terms of the above formalism.Comment: LaTex, to appear in Physica Script
Envelope solitons induced by high-order effects of light-plasma interaction
The nonlinear coupling between the light beams and non-resonant ion density
perturbations in a plasma is considered, taking into account the relativistic
particle mass increase and the light beam ponderomotive force. A pair of
equations comprising a nonlinear Schrodinger equation for the light beams and a
driven (by the light beam pressure) ion-acoustic wave response is derived. It
is shown that the stationary solutions of the nonlinear equations can be
represented in the form of a bright and dark/gray soliton for one-dimensional
problem. We have also present a numerical analysis which shows that our bright
soliton solutions are stable exclusively for the values of the parameters
compatible with of our theory.Comment: 9 pages, 5 figure
Nonlocal effects in high energy charged particle beams
Within the framework of the thermal wave model, an investigation is made of
the longitudinal dynamics of high energy charged particle beams. The model
includes the self-consistent interaction between the beam and its surroundings
in terms of a nonlinear coupling impedance, and when resistive as well as
reactive parts are included, the evolution equation becomes a generalised
nonlinear Schroedinger equation including a nonlocal nonlinear term. The
consequences of the resistive part on the propagation of particle bunches are
examined using analytical as well as numerical methods.Comment: 6 pages, 6 figures, uses RevTeX
An interprofessional, intercultural, immersive short-term study abroad program: public health and service systems in rome
The purpose of this paper is to describe a short-term study abroad program that exposes engineering and nursing undergraduate students from the United States and Italy to an intercultural and interprofessional immersion experience. Faculty from Purdue University and Sapienza UniversitĂ di Roma collaborated to design a technical program that demonstrates the complementary nature of engineering and public health in the service sector, with Rome as an integral component of the program. Specifically, the intersection of topics including systems, reliability, process flow, maintenance management, and public health are covered through online lectures, in-class activities and case study discussions, field experiences, and assessments. Herein, administrative issues such as student recruitment, selection, and preparation are elucidated. Additionally, the pedagogical approach used to ensure constructive alignment among the program goals, the intended learning outcomes, and the teaching and learning activities is described. Finally, examples of learning outcomes resulting from this alignment are provided
Recommended from our members
Experimental and numerical investigation on forced convection in circular tubes with nanofluids
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.In this paper an experimental and numerical study to investigate the convective heat transfer
characteristics of fully developed turbulent flow of a water–Al2O3 nanofluid in a circular tube is presented.
The numerical simulations are accomplished on the experimental test section configuration. In the analysis,
the fluid flow and the thermal field are assumed axial-symmetric, two-dimensional and steady state. The
single-phase model is employed to model the nanofluid mixture and k-ε model is used to describe the
turbulent fluid flow. Experimental and numerical results are carried out for different volumetric flow rates
and nanoparticles concentration values. Heat transfer convective coefficients as a function of flow rates and
Reynolds numbers are presented. The results indicate that the heat transfer coefficients increase for all
nanofluids concentrations compared to pure water at increasing volumetric flow rate. Heat transfer
coefficient increases are observed at assigned volumetric flow rate for nanofluid mixture with higher
concentrations whereas Nusselt numbers present lower values than the ones for pure water
- …