166 research outputs found

    Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics

    Get PDF
    Femtosecond optical pulses at mid-infrared frequencies have opened up the nonlinear control of lattice vibrations in solids. So far, all applications have relied on second order phonon nonlinearities, which are dominant at field strengths near 1 MVcm-1. In this regime, nonlinear phononics can transiently change the average lattice structure, and with it the functionality of a material. Here, we achieve an order-of-magnitude increase in field strength, and explore higher-order lattice nonlinearities. We drive up to five phonon harmonics of the A1 mode in LiNbO3. Phase-sensitive measurements of atomic trajectories in this regime are used to experimentally reconstruct the interatomic potential and to benchmark ab-initio calculations for this material. Tomography of the Free Energy surface by high-order nonlinear phononics will impact many aspects of materials research, including the study of classical and quantum phase transitions

    Metastable ferroelectricity in optically strained SrTiO3SrTiO_3

    Full text link
    Fluctuating orders in solids are generally considered high-temperature precursors of broken symmetry phases. However, in some cases these fluctuations persist to zero temperature and prevent the emergence of long-range order, as for example observed in quantum spin and dipolar liquids. SrTiO3SrTiO_3 is a quantum paraelectric in which dipolar fluctuations grow when the material is cooled, although a long-range ferroelectric order never sets in. We show that the nonlinear excitation of lattice vibrations with mid-infrared optical pulses can induce polar order in SrTiO3SrTiO_3 up to temperatures in excess of 290 K. This metastable phase, which persists for hours after the optical pump is interrupted, is evidenced by the appearance of a large second-order optical nonlinearity that is absent in equilibrium. Hardening of a low-frequency mode indicates that the polar order may be associated with a photo-induced ferroelectric phase transition. The spatial distribution of the optically induced polar domains suggests that a new type of photo-flexoelectric coupling triggers this effect

    Dynamical Multiferroicity

    Full text link
    An appealing mechanism for inducing multiferroicity in materials is the generation of electric polarization by a spatially varying magnetization that is coupled to the lattice through the spin-orbit interaction. Here we describe the reciprocal effect, in which a time-dependent electric polarization induces magnetization even in materials with no existing spin structure. We develop a formalism for this dynamical multiferroic effect in the case for which the polarization derives from optical phonons, and compute the strength of the phonon Zeeman effect, which is the solid-state equivalent of the well-established vibrational Zeeman effect in molecules, using density functional theory. We further show that a recently observed behavior -- the resonant excitation of a magnon by optically driven phonons -- is described by the formalism. Finally, we discuss examples of scenarios that are not driven by lattice dynamics and interpret the excitation of Dzyaloshinskii-Moriya-type electromagnons and the inverse Faraday effect from the viewpoint of dynamical multiferroicity

    Parametric amplification of optical phonons

    Full text link
    Amplification of light through stimulated emission or nonlinear optical interactions has had a transformative impact on modern science and technology. The amplification of other bosonic excitations, like phonons in solids, is likely to open up new remarkable physical phenomena. Here, we report on an experimental demonstration of optical phonon amplification. A coherent mid-infrared optical field is used to drive large amplitude oscillations of the Si-C stretching mode in silicon carbide. Upon nonlinear phonon excitation, a second probe pulse experiences parametric optical gain at all wavelengths throughout the reststrahlen band, which reflects the amplification of optical-phonon fluctuations. Starting from first principle calculations, we show that the high-frequency dielectric permittivity and the phonon oscillator strength depend quadratically on the lattice coordinate. In the experimental conditions explored here, these oscillate then at twice the frequency of the optical field and provide a parametric drive for lattice fluctuations. Parametric gain in phononic four wave mixing is a generic mechanism that can be extended to all polar modes of solids, as a new means to control the kinetics of phase transitions, to amplify many body interactions or to control phonon-polariton waves

    Probing optically silent superfluid stripes in cuprates

    Full text link
    Unconventional superconductivity in the cuprates emerges from, or coexists with, other types of electronic order. However, these orders are sometimes invisible because of their symmetry. For example, the possible existence of superfluid charge stripes in the normal state of single layer cuprates cannot be validated with infrared optics, because interlayer tunneling fluctuations vanish on average. Similarly, it is not easy to establish if charge orders are responsible for dynamical decoupling of the superconducting layers over broad ranges of doping and temperatures. Here, we show that TeraHertz pulses can excite nonlinear tunneling currents between linearly de-coupled charge-ordered planes. A giant TeraHertz third harmonic signal is observed in La1.885Ba0.115CuO4 far above Tc=13 K and up to the charge ordering temperature TCO = 55 K. We model these results by considering large order-parameter-phase oscillations in a pair density wave condensate, and show how nonlinear mixing of optically silent tunneling modes can drive large dipole-carrying super-current oscillations. Our results provide compelling experimental support for the presence of hidden superfluid order in the normal state of cuprates. These experiments also underscore the power of nonlinear TeraHertz optics as a sensitive probe of frustrated excitations in quantum solids.Comment: 9 pages main text, 5 figures, 12 page supplementar

    Experimental evidence for Wigner's tunneling time

    Full text link
    Tunneling of a particle through a potential barrier remains one of the most remarkable quantum phenomena. Owing to advances in laser technology, electric fields comparable to those electrons experience in atoms are readily generated and open opportunities to dynamically investigate the process of electron tunneling through the potential barrier formed by the superposition of both laser and atomic fields. Attosecond-time and angstrom-space resolution of the strong laser-field technique allow to address fundamental questions related to tunneling, which are still open and debated: Which time is spent under the barrier and what momentum is picked up by the particle in the meantime? In this combined experimental and theoretical study we demonstrate that for strong-field ionization the leading quantum mechanical Wigner treatment for the time resolved description of tunneling is valid. We achieve a high sensitivity on the tunneling barrier and unambiguously isolate its effects by performing a differential study of two systems with almost identical tunneling geometry. Moreover, working with a low frequency laser, we essentially limit the non-adiabaticity of the process as a major source of uncertainty. The agreement between experiment and theory implies two substantial corrections with respect to the widely employed quasiclassical treatment: In addition to a non-vanishing longitudinal momentum along the laser field-direction we provide clear evidence for a non-zero tunneling time delay. This addresses also the fundamental question how the transition occurs from the tunnel barrier to free space classical evolution of the ejected electron.Comment: 31 pages, 15 figures including appendi
    • …
    corecore