21 research outputs found
Feasibility of different weather data sources applied to building indoor temperature estimation using LSTM neural networks
The use of Machine Learning models is becoming increasingly widespread to assess energy performance of a building. In these models, the accuracy of the results depends largely on outdoor conditions. However, getting these data on-site is not always feasible. This article compares the temperature results obtained for an LSTM neural network model, using four types of meteorological data sources. The first is the monitoring carried out in the building; the second is a meteorological station near the site of the building; the third is a table of meteorological data obtained through a kriging process and the fourth is a dataset obtained using GFS. The results are analyzed using the CV(RSME) and NMBE indices. Based on these indices, in the four series, a CV(RSME) slightly higher than 3% is obtained, while the NMBE is below 1%, so it can be deduced that the sources used are interchangeable.Ministerio de Ciencia, Innovación y Universidades | Ref. RTI2018-096296-B-C
Modeling of Energy Demand and Savings Associated with the Use of Epoxy-Phase Change Material Formulations
The article of record as published may be found at http://dx.doi.org/10.3390/ma13030639This manuscript integrates the experimental findings of recently developed epoxy-phase change material (PCM) formulations with modeling efforts aimed to determine the energy demands and savings derived from their use. The basic PCM system employed was composed of an epoxy resin, a thickening agent, and nonadecane, where the latter was the hydrocarbon undergoing the phase transformation. Carbon nanofibers (CNF) and boron nitride (BN) particulates were used as heat flow enhancers. The thermal conductivities, densities, and latent heat determined in laboratory settings were introduced in a model that calculated, using EnergyPlus software, the energy demands, savings and temperature profiles of the interior and the walls of a shelter for six different locations on Earth. A shipping container was utilized as exemplary dwelling. Results indicated that all the epoxy-PCM formulations had a positive impact on the total energy savings (between 16% and 23%) for the locations selected. The use of CNF and BN showed an increase in performance when compared with the formulation with no thermal filler additives. The formulations selected showed great potential to reduce the energy demands, increase savings, and result in more adequate temperatures for living and storage spaces applications.This research was funded by Office of Naval Research Energy System Technology Evaluation Program. Richa Agrawal acknowledges the National Academies of Sciences, Engineering, and Medicine (NASEM) for support through National Research Council Research Associateship Program (NRC-RAP).This research was funded by Office of Naval Research Energy System Technology Evaluation Program. Richa Agrawal acknowledges the National Academies of Sciences, Engineering, and Medicine (NASEM) for support through National Research Council Research Associateship Program (NRC-RAP)
IoT-based platform for automated IEQ spatio-temporal analysis in buildings using machine learning techniques
Financiaciado para publicación en acceso aberto: Universidade de Vigo/CISUGProviding accurate information about the indoor environmental quality (IEQ) conditions inside building spaces is
essential to assess the comfort levels of their occupants. These values may vary inside the same space, especially
for large zones, requiring many sensors to produce a fine-grained representation of the space conditions, which
increases hardware installation and maintenance costs. However, sound interpolation techniques may produce
accurate values with fewer input points, reducing the number of sensors needed. This work presents a platform to
automate this accurate IEQ representation based on a few sensor devices placed across a large building space. A
case study is presented in a research centre in Spain using 8 wall-mounted devices and an additional moving
device to train a machine learning model. The system yields accurate results for estimations at positions and
times never seen before by the trained model, with relative errors between 4% and 10% for the analysed
variables.Ministerio de Ciencia, Innovación y Universidades | Ref. RTI2018-096296-B-C2Ministerio de Ciencia, Innovación y Universidades | Ref. FPU17/ 01834Ministerio de Ciencia, Innovación y Universidades | Ref. FPU19/01187Universidad de Vigo | Ref. 00VI 131H 641.0
Análisis del “fouling” procedente de la combustión de pellet de pino y pellet de paja en una caldera de baja potencia: influencia de los parámetros de combustión
El “fouling”, es decir, la formación de depósitos sobre las superficies sometidas principalmente a
convección, es uno de los principales problemas en las calderas de combustión de biomasa. La
acumulación de estos depósitos puede causar una significante pérdida de eficiencia energética. Su
principal causa es la propia composición inorgánica de la biomasa utilizada. Sin embargo, en las
calderas de baja potencia, donde los intercambiadores de calor están relativamente cerca de la cámara
de combustión, se observa cómo los depósitos están compuestos por una gran parte de material
orgánico, existiendo pocos estudios al respecto. Además, no sólo la composición química de la
biomasa repercute en la formación de depósitos sino también los parámetros de la combustión,
obteniéndose un punto óptimo de operación de la caldera.
El estudio realizado consistió en la evaluación de la materia orgánica e inorgánica que componen el
“fouling” procedente de la combustión de dos tipos de pellet diferentes, uno de madera de pino y otro
de paja, en una caldera de lecho fijo y baja potencia. Primero, se compararon teóricamente ambos
tipos de combustibles a través de índices de deposición teóricos. A continuación, se realizaron
distintas combustiones variando los siguientes parámetros operativos: la duración de la combustión, la
distribución del caudal de aire primario y secundario y el caudal de aire total suministrado. De cada
uno de estos ensayos, se recogieron los depósitos del tubo intercambiador de calor. Se distinguieron
dos capas; el “fouling adherido”, que se corresponde con la capa más interior pegada al tubo y el
“fouling depositado”, que se corresponde con la capa más superficial depositada sobre la anterior. Se
observó que ambas capas tenían comportamientos y composiciones ligeramente diferentes. A través de
termogravimetría (TG-DSC) se determinó cuantitativamente el contenido de materia orgánica presente
en las muestras y su comportamiento térmico. El análisis químico se llevó a cabo usando microscopía
electrónica de barrido con espectroscopía de energía dispersiva de rayos X (SEM-EDS) determinando
la composición elemental total de cada muestra. Los resultados indicaron que los depósitos tenían una
gran cantidad de materia orgánica. Además, en general, en los depósitos de pino, el contenido en
materia orgánica de las muestras disminuye cuando la duración de la combustión, el caudal de aire
total y el caudal de aire primario aumentan. Lo cual queda corroborado por la cantidad de C obtenido
en las muestras con SEM-EDS. Asimismo, se obtuvo una mayor cantidad de Si, sobre todo, pero
también de Cl y K, en los depósitos de paja, causando los mayores problemas de combustión
experimentados.Los autores agradecen el apoyo financiero del Ministerio de Economía y Competitividad a través del
proyecto ENE2012-36405
Evaluación del mercado europeo de calderas de pellet de baja potencia
Este trabajo analiza las características tecnológicas del uso de pellets para el mercado de baja potencia
dentro del mercado europeo. Se pretende valorar el estado del arte de calderas y su adaptación a los
recientes cambios normativos derivados de la revisión de la norma EN-303-5-2012. Para ello se ha
realizado un amplio estudio de mercado creando una base de datos que incluye más de 150 empresas y
más de 600 tipos de calderas, lo que permite estudiar la situación actual del mercado en la mayoría de
países de Europa. En este estudio se entiende como unidades de baja potencia, aquellas con una
potencia inferior a los 200 kW. Las peculiaridades tecnologías de estas unidades son descritas y
comparadas en términos de eficiencia y de emisiones de gases contaminantes, y también dentro del
marco de la nueva normativa europea.
El gran número de relativamente nuevas compañías muestra el creciente interés no solo del uso de
pellets, sino del desarrollo de la tecnología para su uso en la producción de calor. No obstante este
estudio muestra que este mercado sigue dominado por las empresas austriacas y alemanas, tanto en el
número de empresas como por la variedad de productos ofertados.
La tecnología imperante es la caldera pirotubular vertical, con un intercambiador posicionado por
encima de un lecho de pellet fijo. El control de la caldera a través de una sonda lambda sigue siendo
un característica mayoritaria solo del rango de potencias más altas (>24kW). También se constata que
la revisión de la norma europea era necesaria, pues la versión de 1999 no permitía segmentar el
mercado, ya que prácticamente la mayoría de las calderas conseguían anteriormente la máxima
calificación, lo que en la práctica dejaba sin efecto la escala de calificación, y no permite al
consumidor distinguir entre las calderas mejores y peores.CaLos autores agradecen el apoyo financiero del Ministerio de Economía y Competitividad a través del
proyecto ENE2012-3640
A Comparative Study of Fouling and Bottom Ash from Woody Biomass Combustion in a Fixed-Bed Small-Scale Boiler and Evaluation of the Analytical Techniques Used
In this work, fouling and bottom ash were collected from a low-power boiler after wood pellet combustion and studied using several analytical techniques to characterize and compare samples from different areas and determine the suitability of the analysis techniques employed. TGA results indicated that the fouling contained a high amount of organic matter (70%). The XRF and SEM-EDS measurements revealed that Ca and K are the main inorganic elements and exhibit clear tendency in the content of Cl that is negligible in the bottom ash and increased as it penetrated into the innermost layers of the fouling. Calcite, magnesia and silica appeared as the major crystalline phases in all the samples. However, the bottom ash was primarily comprised of calcium silicates. The KCl behaved identically to the Cl, preferably appeared in the adhered fouling samples. This salt, which has a low melting point, condenses upon contact with the low temperature tube and played a crucial role in the early stages of fouling formation. XRD was the most useful technique applied, which provided a semi-quantitative determination of the crystalline phases. FTIR was proven to be inadequate for this type of sample. The XRF and SEM-EDS, techniques yield similar results despite being entirely different
Contribuciones en la investigación de las cenizas y del ensuciamiento en calderas de combustión de biomasa : técnicas analíticas y contraste experimental
La biomasa como fuente de energía renovable es un factor clave a tener en cuenta en el desarrollo energético sostenible. Las transformaciones energéticas de la biomasa conllevan una problemática inherente al combustible utilizado y al propio proceso de transformación. Con el objetivo de optimizar y maximizar el rendimiento de los procesos, estos problemas deben ser identificados, entendidos e investigados en profundidad, a través de las técnicas analíticas adecuadas. De esta necesidad surge el estudio implementado en el presente trabajo.
En esta tesis se presentan contribuciones experimentales en la investigación de cenizas de biomasa y de ensuciamiento procedentes de calderas de combustión mediante la aplicación de distintas técnicas analíticas. El principal objetivo de la tesis es la puesta a punto de técnicas analíticas para su aplicación en la caracterización de muestras procedentes de calderas de combustión, aportando y contrastando una metodología que permita conocer en profundidad el comportamiento térmico y químico de las cenizas y del ensuciamiento de la biomasa.
En la primera parte de la tesis se realiza una preparación previa de las técnicas analíticas empleadas a lo largo de las investigaciones, trabajando en concreto con la termogravimetría y calorimetría de barrido diferencial (TG-DTA/DSC) y la espectroscopía infrarroja de ransformada de Fourier (FTIR). Esta primera parte se divide en dos estudios.
Primero, se realizan ensayos experimentales del proceso de fusión del indio en un equipo TG-DTA/DSC como parte de su calibración y se comparan con resultados de simulación para asegurar el correcto funcionamiento del equipo y determinar su potencial para la caracterización del comportamiento térmico de la biomasa.
Segundo, se desarrolla una metodología experimental para la extracción de aceites condensables de pirólisis de biomasa, descubriendo que el comportamiento de la deposición depende estrechamente de la composición de la biomasa pirolizada y de las condiciones térmicas.
En la segunda parte de la tesis, se aplican las técnicas anteriores y otras técnicas de análisis químico elemental y composicional; en concreto, la espectroscopía de fluorescencia de rayos X (XRF), la microscopía electrónica de barrido con espectroscopía de energía dispersiva de rayos X (SEM-EDS) y la espectroscopía de difracción de rayos X (XRD), a muestras procedentes de la combustión de biomasa en una caldera experimental de lecho fijo de baja potencia. Esta segunda parte se divide en cuatro trabajos diferentes.
Primero, se caracterizan y comparan muestras de cenizas de parrilla y de dos capas de ensuciamiento procedentes de la combustión de pellet de madera en una caldera experimental a través de todas las técnicas disponibles, revelando conclusiones en cuanto al comportamiento térmico y químico de las muestras y en cuanto a la aplicabilidad de las técnicas analíticas estudiadas.
Segundo, se estudian las diferencias de dos tipos de cenizas obtenidas con métodos y equipos diferentes. Una de ellas obtenida en un horno de mufla a una temperatura constante de 550°C y la otra obtenida de la combustión de biomasa en una caldera experimental. Se concluye que los factores más importantes que influyen en la composición de las cenizas de una misma biomasa son la temperatura alcanzada y su uniformidad así como el tamaño y la forma de las partículas del combustible.
Tercero, se realiza un estudio comparativo sobre la precisión y la exactitud de las técnicas SEM-EDS y XRF aplicadas a la determinación de la composición elemental de la ceniza de biomasa procedente de una caldera experimental, concluyendo que la técnica SEM-EDS no puede reemplazar a la técnica XRF, pero proporciona resultados semicuantitativos que pueden ser válidos en función del objetivo del estudio.
En cuarto lugar, y por último, se estudia la influencia de parámetros operativos de la combustión en la composición del ensuciamiento del tubo intercambiador de calor. En concreto, se investiga la influencia del caudal de aire total suministrado y de la temperatura superficial del tubo de agua, obteniéndose distintas tendencias en el comportamiento térmico y químico de la materia orgánica e inorgánica que compone el ensuciamiento.
Los principales resultados de los estudios realizados revelan la importancia de una correcta caracterización térmica y química de las muestras de ceniza y de ensuciamiento para conocer su comportamiento durante la combustión. Se demuestra que el comportamiento de estas muestras depende principalmente de su composición y que esta composición está influenciada no solamente por la composición del combustible utilizado, sino también, por otros parámetros como la temperatura alcanzada en el equipo, la uniformidad de esta temperatura, el tamaño y forma de las partículas de combustible, el caudal suministrado en la combustión o la temperatura del agua de la caldera. Además, se concluyen diferencias significativas entre las capas de ensuciamiento revelando tendencias de ciertos elementos y compuestos en las distintas fases de formación del ensuciamiento. En cuanto a la viabilidad práctica de las principales técnicas analíticas estudiadas para la caracterización de muestras de ceniza y ensuciamiento de biomasa se demuestra qué técnicas resultan adecuadas en función de los objetivos perseguidos y de las limitaciones operativas en cada estudio
Maintenance factor identification in outdoor lighting installations using simulation and optimization techniques
This document addresses the development of a novel methodology to identify the actual maintenance factor of the luminaires of an outdoor lighting installation in order to assess their lighting performance. The method is based on the combined use of Radiance, a free and open-source tool, for the modeling and simulation of lighting scenes, and GenOpt, a generic optimization program, for the calibration of the model. The application of this methodology allows the quantification of the deterioration of the road lighting system and the identification of luminaires that show irregularities in their operation. Values lower than 9% for the error confirm that this research can contribute to the management of street lighting by assessing real road conditions.Xunta de Galicia | Ref. IN852A/81Xunta de Galicia | Ref. ED481
Prediction of building’s thermal performance using LSTM and MLP neural networks
Accurate prediction of building indoor temperatures and thermal demand is of great help to control and optimize the energy performance of a building. However, building thermal inertia and lag lead to complex nonlinear systems is difficult to model. In this context, the application of artificial neural networks (ANNs) in buildings has grown considerably in recent years. The aim of this work is to study the thermal inertia of a building by developing an innovative methodology using multi-layered perceptron (MLP) and long short-term memory (LSTM) neural networks. This approach was applied to a public library building located in the north of Spain. A comparison between the prediction errors according to the number of time lags introduced in the models has been carried out. Moreover, the accuracy of the models was measured using the CV(RMSE) as advised by AHSRAE. The main novelty of this work lies in the analysis of the building inertia, through machine learning algorithms, observing the information provided by the input of time lags in the models. The results of the study prove that the best models are those that consider the thermal lag. Errors below 15% for thermal demand and below 2% for indoor temperatures were achieved with the proposed methodology.Ministerio de Ciencia, Innovación y Universidades | Ref. RTI2018-096296-B-C2
Development of a calibrated simulation method for airborne particles to optimize energy consumption in operating rooms
Operating rooms are stringent controlled environments. All influential factors, in particular, airborne particles, must be within the limits established by regulations. Therefore, energy efficiency stays in the background, prioritizing safety and comfort in surgical areas. However, the potential of improvement in energy savings without compromising this safety is broad. This work presents a new procedure, based on calibrated simulations, that allows the identification of potential energy savings in an operating room, complying with current airborne particle standards. Dynamic energy and airborne particle models are developed and then simulated in TRNSYS and calibrated with GenOpt. The methodology is validated through experimental contrast with a real operating room of a hospital in Spain. A calibrated model with around 2% of error is achieved. The procedure determines the variation in particle concentration according to the flow rate of ventilation supplied and the occupancy of the operating room. In conclusion, energy savings up to 51% are possible, reducing ventilation by 50% while complying with airborne particles standards.SMARTHERM Research for development of characterization tools and the prediction of energy performance of buildingsCONECTA PEME (FEDER-GALICIA 2014/2020) | Ref. INMENA (IN852A 2018/59