15 research outputs found

    Does organic farming benefit farmland birds in winter?

    Get PDF
    The generally higher biodiversity on organic farms may be influenced by management features such as no synthetic pesticide and fertilizer inputs and/or by differences in uncropped habitat at the site and landscape scale. We analysed bird and habitat data collected on 48 paired organic and conventional farms over two winters to determine the extent to which broad-scale habitat differences between systems could explain overall differences in farmland bird abundance. Density was significantly higher on organic farms for six out of 16 species, and none on conventional. Total abundance of all species combined was higher on organic farms in both years. Analyses using an information-theoretic approach suggested that both habitat extent and farm type were important predictors only for starling and greenfinch. Organic farming as currently practised may not provide significant benefits to those bird species that are limited by winter food resources, in particular, several declining granivores

    A comparison of butterfly populations on organically and conventionally managed farmland

    No full text
    Habitat loss and reduction in quality, together with increasing homogeneity of the farmed landscape and more intensive field management, are believed to be major drivers of biodiversity loss on farmland. Organic farms demonstrate features that are now rare elsewhere in UK farming systems, such as crop rotations incorporating grass leys, exclusion of synthetic pesticides and fertilizers, and reliance on animal and green manures. They may also contain greater densities of uncropped habitats such as hedgerows. In this study, we examined whether organic farming affected populations of one group of insects of conservation interest, butterflies, on farmland. The abundance of butterflies on pairs of organically and conventionally managed farms was recorded over 3 years and a number of habitat and crop variables, likely to be related to butterfly abundance, were also measured. Organic farms attracted significantly more butterflies overall than conventional farms. Significantly more butterflies in both farming systems were recorded over the uncropped field margin than the crop edge. The difference in butterfly abundance between crop edge and field margin was relatively greater in conventional than organic systems. Species richness of butterflies tended to be greater on organic farms. Five species of butterfly were significantly more abundant on organic farms in at least 1 year, while no species was significantly more abundant on conventional farms. Organic and conventional cropping patterns differed, the former having proportionally more grass leys, and hedgerows were larger on organic farms. Although no significant effects of farming system on the numbers of grass or forb species present in the field margin or crop edge were detected, some individual plant species showed differences in frequency between organic and conventional field boundaries. Increasing the extent of organic farming, or practices associated with it, could help to restore biodiversity in agricultural landscapes

    Benefits of organic farming to biodiversity vary among taxa

    Get PDF
    Habitat and biodiversity differences between matched pairs of organic and non-organic farms containing cereal crops in lowland England were assessed by a large-scale study of plants, invertebrates, birds and bats. Habitat extent, composition and management on organic farms was likely to favour higher levels of biodiversity and indeed organic farms tended to support higher numbers of species and overall abundance across most taxa. However, the magnitude of the response varied; plants showed larger and more consistent responses than other taxa. Variation in response across taxa may be partly a consequence of the small size and isolated context of many organic farms. Extension of organic farming could contribute to the restoration of biodiversity in agricultural landscapes

    Measuring biodiversity and sustainable management in forests and agricultural landscapes

    No full text
    Most of the world's biodiversity will continue to exist outside protected areas and there are also managed lands within many protected areas. In the assessment of millennium targets, there is therefore a need for indicators to measure biodiversity and suitability of habitats for biodiversity both across the whole landscape/seascape and in specific managed habitats. The two predominant land uses in many inhabited areas are forestry and agriculture and these are examined. Many national-level criteria and indicator systems already exist that attempt to assess biodiversity in forests and the impacts of forest management, but there is generally less experience in measuring these values in agricultural landscapes. Existing systems are reviewed, both for their usefulness in providing indicators and to assess the extent to which they have been applied. This preliminary gap analysis is used in the development of a set of indicators suitable for measuring progress towards the conservation of biodiversity in managed forests and agriculture. The paper concludes with a draft set of indicators for discussion, with suggestions including proportion of land under sustainable management, amount of produce from such land, area of natural or high quality semi-natural land within landscapes under sustainable management and key indicator species
    corecore