21 research outputs found

    Audiovisual Processing is Abnormal in Parkinson\u27s Disease and Correlates with Freezing of Gait and Disease Duration

    Get PDF
    Background: Sensory and perceptual disturbances progress with disease duration in Parkinson’s disease (PD) and probably contribute to motor deficits such as bradykinesia and gait disturbances, including freezing of gait (FOG). Simple reaction time tests are ideal to explore sensory processing, as they require little cognitive processing. Multisensory integration is the ability of the brain to integrate sensory information from multiple modalities into a single coherent percept, which is crucial for complex motor tasks such as gait. 9 10 11 12 13 Objectives: The aims of this study were to: 1. Assess differences in unisensory (auditory and visual) and multisensory processing speed in people with PD and age-matched healthy controls. 2. Compare relative differences in unisensory processing in people with PD with disease duration and freezing of gait status taking into account the motor delays, which are invariably present in PD. 3. Compare relative differences in multisensory (audiovisual) processing between the PD cohort and age-matched controls. 14 15 16 17 Methods: 39 people with PD (23 with FOG) and 17 age-matched healthy controls performed a reaction time task in response to unisensory (auditory-alone, visual-alone) and multisensory (audiovisual) stimuli. 18 19 Results: The PD group were significantly slower than controls for all conditions compared with healthy controls but auditory reaction times were significantly faster than visual for the PD group only. These relative unisensory differences are correlated with disease duration and divide the PD group by FOG status, but these factors are co-dependent. Although multisensory facilitation occurs in PD, it is significantly less enhanced than in healthy controls. 20 21 22 23 Conclusion: There are significant unisensory and multisensory processing abnormalities in PD. The relative differences in unisensory processing are specific to PD progression, providing a link between these sensory abnormalities and a motor feature of PD. Sensory disturbances have previously been postulated to be central to FOG but this is the first study to predict audiovisual processing abnormalities using FOG status. The multisensory processing abnormalities are independent of disease duration and FOG status and may be a potential biomarker for the disease

    Medical management of myoclonus-dystonia and implications for underlying pathophysiology

    Get PDF
    Myoclonus-dystonia is an early onset genetic disorder characterised by subcortical myoclonus and less prominent dystonia. Its primary causative gene is the epsilonsarcoglycan gene but the syndrome of “myoclonic dystonia” has been shown to be a heterogeneous group of genetic disorders. The underlying pathophysiology of myoclonus-dystonia is incompletely understood, although it may relate to dysfunction of striatal monoamine neurotransmission or disruption of cerebellothalamic networks (possibly via a GABAergic deficit of Purkinje cells). A broad range of oral medical therapies have been used in the treatment of myoclonus-dystonia with a varying response, and limited data relating to efficacy and tolerability, yet this condition responds dramatically to alcohol. Few well conducted randomized controlled trials have been undertaken leading to an empirical ad hoc approach for many patients. We review the current evidence for pharmacological therapies in myoclonus-dystonia, discuss implications for underlying pathogenesis of the condition and propose a treatment algorithm for these patients

    MicroRNA inhibition using antimiRs in acute human brain tissue sections

    Get PDF
    Antisense inhibition of microRNAs is an emerging preclinical approach to pharmacoresistant epilepsy. A leading candidate is an "antimiR" targeting microRNA-134 (ant-134), but testing to date has used rodent models. Here, we develop an antimiR testing platform in human brain tissue sections. Brain specimens were obtained from patients undergoing resective surgery to treat pharmacoresistant epilepsy. Neocortical specimens were submerged in modified artificial cerebrospinal fluid (ACSF) and dissected for clinical neuropathological examination, and unused material was transferred for sectioning. Individual sections were incubated in oxygenated ACSF, containing either ant-134 or a nontargeting control antimiR, for 24 h at room temperature. RNA integrity was assessed using BioAnalyzer processing, and individual miRNA levels were measured using quantitative reverse transcriptase polymerase chain reaction. Specimens transported in ACSF could be used for neuropathological diagnosis and had good RNA integrity. Ant-134 mediated a dose-dependent knockdown of miR-134, with approximately 75% reduction of miR-134 at 1 μmol L-1 and 90% reduction at 3 μmol L-1 . These doses did not have off-target effects on expression of a selection of three other miRNAs. This is the first demonstration of ant-134 effects in live human brain tissues. The findings lend further support to the preclinical development of a therapy that targets miR-134 and offer a flexible platform for the preclinical testing of antimiRs, and other antisense oligonucleotide therapeutics, in human brain

    Obesity in adults: a 2022 adapted clinical practice guideline for Ireland

    Get PDF
    This Clinical Practice Guideline (CPG) for the management of obesity in adults in Ireland, adapted from the Canadian CPG, defines obesity as a complex chronic disease characterised by excess or dysfunctional adiposity that impairs health. The guideline reflects substantial advances in the understanding of the determinants, pathophysiology, assessment, and treatment of obesity. It shifts the focus of obesity management toward improving patient-centred health outcomes, functional outcomes, and social and economic participation, rather than weight loss alone. It gives recommendations for care that are underpinned by evidence-based principles of chronic disease management; validate patients' lived experiences; move beyond simplistic approaches of "eat less, move more" and address the root drivers of obesity. People living with obesity face substantial bias and stigma, which contribute to increased morbidity and mortality independent of body weight. Education is needed for all healthcare professionals in Ireland to address the gap in skills, increase knowledge of evidence-based practice, and eliminate bias and stigma in healthcare settings. We call for people living with obesity in Ireland to have access to evidence-informed care, including medical, medical nutrition therapy, physical activity and physical rehabilitation interventions, psychological interventions, pharmacotherapy, and bariatric surgery. This can be best achieved by resourcing and fully implementing the Model of Care for the Management of Adult Overweight and Obesity. To address health inequalities, we also call for the inclusion of obesity in the Structured Chronic Disease Management Programme and for pharmacotherapy reimbursement, to ensure equal access to treatment based on health-need rather than ability to pay

    Motor Preparation Rather Than Decision-Making Differentiates Parkinson’s Disease Patients With And Without Freezing of Gait

    Get PDF
    Objective: Freezing of gait (FOG) is a brief, episodic phenomenon affecting over half of people with Parkinson’s disease (PD) and leads to significant morbidity. The pathophysiology of FOG remains poorly understood but is associated with deficits in cognitive function and motor preparation. Method: We studied 20 people with PD (10 with FOG, 10 without FOG) and performed a timed response target detection task while electroencephalographic data were acquired. We analysed the data to detect and examine cortical markers of cognitive decision making (P3b or centroparietal positivity, CPP) and motor readiness potential. We analysed current source density (CSD) to increase spatial resolution and allow identification of distinct signals. Results: There was no difference in the P3b/CPP response between people with PD with and without FOG, suggesting equivalent cognitive processing with respect to decision-making. However, the FOG group had significant difference with an earlier onset and larger amplitude of the lateralized readiness potential. Furthermore, the amplitude of the lateralised readiness potential correlated strongly with total Frontal Assessment Battery score. Conclusions: The difference in lateralized readiness potentials may reflect excessive recruitment of lateral premotor areas to compensate for dysfunction of the supplementary motor area and resultant loss of automatic motor control. This early, excessive recruitment of frontal networks occurs in spite of equivalent motor scores and reaction times between groups. Significance: The saturation of frontal processing mechanisms could help explain deficits in attentional set-shifting, dual-tasking and response inhibition which are frequently reported in FOG

    Neurophysiological correlates of dual tasking in people with Parkinson\u27s disease and freezing of gait

    No full text
    Freezing of gait in people with Parkinson\u27s disease (PwP) is associated with executive dysfunction and motor preparation deficits. We have recently shown that electrophysiological markers of motor preparation, rather than decision-making, differentiate PwP with freezing of gait (FOG +) and without (FOG -) while sitting. To examine the effect of locomotion on these results, we measured behavioural and electrophysiological responses in PwP with and without FOG during a target response time task while sitting (single-task) and stepping-in-place (dual-task). Behavioural and electroencephalographic data were acquired from 18 PwP (eight FOG +) and seven young controls performing the task while sitting and stepping-in-place. FOG + had slower response times while stepping compared with sitting. However, response times were significantly faster while stepping compared with sitting for controls. Electrophysiological responses showed no difference in decision-making potentials (centroparietal positivity) between groups or conditions but there were differences in neurophysiological markers of response inhibition (N2) and motor preparation (lateralized readiness potential, LRP) in FOG + while performing a dual-task. This suggests that the addition of a second complex motor task (stepping-in-place) impacts automatic allocation of resources in FOG +, resulting in delayed response times. The impact of locomotion on the generation of the N2 and LRP potentials, particularly in freezers, indirectly implies that these functions compete with locomotion for resources. In the setting of multiple complex tasks or cognitive impairment, severe motor dysfunction may result, leading to freezing of gait

    Interleukin-6 does not upregulate pro-inflammatory cytokine expression in an ex vivo model of giant cell arteritis

    No full text
    Objective: The aim of this study was to examine the pro-inflammatory effects of IL-6 in ex vivo temporal artery explant cultures. Methods: Patients meeting 1990 ACR classification criteria for GCA were prospectively recruited. Temporal artery biopsies were obtained and temporal artery explants cultured ex vivo with IL-6 (10-40 ng/ml) in the presence or absence of its soluble receptor (sIL-6R; 20 ng/ml) for 24 h. Explant supernatants were harvested after 24 h and assayed for IFN-γ, TNF-α, Serum amyloid A, IL-1β, IL-17, IL-8, angiotensin II and VEGF by ELISA. Myofibroblast outgrowths, cytoskeletal rearrangement and wound repair assays were performed. Results: IL-6 augmented production of VEGF, but not of any of the other pro-inflammatory mediators assayed. No differences were observed in the explants cultured in the presence or absence of the sIL-6R or between those with a positive (n = 11) or negative (n = 17) temporal artery biopsy. IL-6 did not enhance myofibroblast proliferation or migration. Western blot analysis confirmed signalling activation, with increased expression of pSTAT3 in response to IL-6+sIL-6R. Conclusion: IL-6 stimulation of temporal artery explants from patients with GCA neither increased expression of key pro-inflammatory mediators nor influenced myofibroblast proliferation or migration.</p
    corecore