9 research outputs found

    Cholangiocyte organoids can repair bile ducts after transplantation in the human liver.

    Get PDF
    Organoid technology holds great promise for regenerative medicine but has not yet been applied to humans. We address this challenge using cholangiocyte organoids in the context of cholangiopathies, which represent a key reason for liver transplantation. Using single-cell RNA sequencing, we show that primary human cholangiocytes display transcriptional diversity that is lost in organoid culture. However, cholangiocyte organoids remain plastic and resume their in vivo signatures when transplanted back in the biliary tree. We then utilize a model of cell engraftment in human livers undergoing ex vivo normothermic perfusion to demonstrate that this property allows extrahepatic organoids to repair human intrahepatic ducts after transplantation. Our results provide proof of principle that cholangiocyte organoids can be used to repair human biliary epithelium

    Predicting Early Allograft Function After Normothermic Machine Perfusion.

    No full text
    BACKGROUND: Normothermic ex situ liver perfusion is increasingly used to assess donor livers, but there remains a paucity of evidence regarding criteria upon which to base a viability assessment or criteria predicting early allograft function. METHODS: Perfusate variables from livers undergoing normothermic ex situ liver perfusion were analyzed to see which best predicted the Model for Early Allograft Function score. RESULTS: One hundred fifty-four of 203 perfused livers were transplanted following our previously defined criteria. These comprised 84/123 donation after circulatory death livers and 70/80 donation after brain death livers. Multivariable analysis suggested that 2-h alanine transaminase, 2-h lactate, 11 to 29 mmol supplementary bicarbonate in the first 4 h, and peak bile pH were associated with early allograft function as defined by the Model for Early Allograft Function score. Nonanastomotic biliary strictures occurred in 11% of transplants, predominantly affected first- and second-order ducts, despite selection based on bile glucose and pH. CONCLUSIONS: This work confirms the importance of perfusate alanine transaminase and lactate at 2-h, as well as the amount of supplementary bicarbonate required to keep the perfusate pH > 7.2, in the assessment of livers undergoing perfusion. It cautions against the use of lactate as a sole indicator of viability and also suggests a role for cholangiocyte function markers in predicting early allograft function

    In situ normothermic perfusion of livers in controlled circulatory death donation may prevent ischemic cholangiopathy and improve graft survival.

    Get PDF
    Livers from controlled donation after circulatory death (DCD) donors suffer a higher incidence of nonfunction, poor function, and ischemic cholangiopathy. In situ normothermic regional perfusion (NRP) restores a blood supply to the abdominal organs after death using an extracorporeal circulation for a limited period before organ recovery. We undertook a retrospective analysis to evaluate whether NRP was associated with improved outcomes of livers from DCD donors. NRP was performed on 70 DCD donors from whom 43 livers were transplanted. These were compared with 187 non-NRP DCD donor livers transplanted at the same two UK centers in the same period. The use of NRP was associated with a reduction in early allograft dysfunction (12% for NRP vs. 32% for non-NRP livers, P = .0076), 30-day graft loss (2% NRP livers vs. 12% non-NRP livers, P = .0559), freedom from ischemic cholangiopathy (0% vs. 27% for non-NRP livers, P < .0001), and fewer anastomotic strictures (7% vs. 27% non-NRP, P = .0041). After adjusting for other factors in a multivariable analysis, NRP remained significantly associated with freedom from ischemic cholangiopathy (P < .0001). These data suggest that NRP during organ recovery from DCD donors leads to superior liver outcomes compared to conventional organ recovery.The work in Cambridge was supported by grants from the Evelyn Trust and the National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Organ Donation and Transplantation at the University of Cambridge in collaboration with Newcastle University and in partnership with NHS Blood and Transplant (NHSBT). The Joan Kendrick legacy supported the purchase of a near patient blood chemistry analyzer. The University of Cambridge has received salary support in respect of Professor Watson from the NHS in the East of England through the Clinical Academic Reserve. The work in Edinburgh was supported by grants from the Scottish Government Health and Social Care Directorate and The Edinburgh and Lothian Health Foundation, which enabled the purchase of the NRP equipment. Mr. Oniscu and Mr. Currie are supported by NHS Research Scotland (NRS) Fellowships from the Chief Scientist Office. Both Cambridge and Edinburgh were supported by NHS Blood and Transplant to further evaluate NRP

    FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2.

    No full text
    Preventing SARS-CoV-2 infection by modulating viral host receptors, such as angiotensin-converting enzyme 2 (ACE2)1, could represent a new chemoprophylactic approach for COVID-19 that complements vaccination2,3. However, the mechanisms that control the expression of ACE2 remain unclear. Here we show that the farnesoid X receptor (FXR) is a direct regulator of ACE2 transcription in several tissues affected by COVID-19, including the gastrointestinal and respiratory systems. We then use the over-the-counter compound z-guggulsterone and the off-patent drug ursodeoxycholic acid (UDCA) to reduce FXR signalling and downregulate ACE2 in human lung, cholangiocyte and intestinal organoids and in the corresponding tissues in mice and hamsters. We show that the UDCA-mediated downregulation of ACE2 reduces susceptibility to SARS-CoV-2 infection in vitro, in vivo and in human lungs and livers perfused ex situ. Furthermore, we reveal that UDCA reduces the expression of ACE2 in the nasal epithelium in humans. Finally, we identify a correlation between UDCA treatment and positive clinical outcomes after SARS-CoV-2 infection using retrospective registry data, and confirm these findings in an independent validation cohort of recipients of liver transplants. In conclusion, we show that FXR has a role in controlling ACE2 expression and provide evidence that modulation of this pathway could be beneficial for reducing SARS-CoV-2 infection, paving the way for future clinical trials
    corecore