9,577 research outputs found

    Effect of spin orbit scattering on the magnetic and superconducting properties of nearly ferromagnetic metals: application to granular Pt

    Full text link
    We calculate the effect of scattering on the static, exchange enhanced, spin susceptibility and show that in particular spin orbit scattering leads to a reduction of the giant moments and spin glass freezing temperature due to dilute magnetic impurities. The harmful spin fluctuation contribution to the intra-grain pairing interaction is strongly reduced opening the way for BCS superconductivity. We are thus able to explain the superconducting and magnetic properties recently observed in granular Pt as due to scattering effects in single small grains.Comment: 9 pages 3 figures, accepted for publication in Phys. Rev. Letter

    Modeling Teletraffic Arrivals by a Poisson Cluster Process

    Full text link
    Modeling Teletraffic Arrivals by a Poisson Cluster Proces

    Dynamical study of the hyperextended scalar-tensor theory in the empty Bianchi type I model

    Full text link
    The dynamics of the hyperextended scalar-tensor theory in the empty Bianchi type I model is investigated. We describe a method giving the sign of the first and second derivatives of the metric functions whatever the coupling function. Hence, we can predict if a theory gives birth to expanding, contracting, bouncing or inflationary cosmology. The dynamics of a string inspired theory without antisymetric field strength is analysed. Some exact solutions are found.Comment: 18 pages, 3 figure

    A note on the Gauss decomposition of the elliptic Cauchy matrix

    Full text link
    Explicit formulas for the Gauss decomposition of elliptic Cauchy type matrices are derived in a very simple way. The elliptic Cauchy identity is an immediate corollary.Comment: 5 page

    Effects of maternal subnutrition during early pregnancy on cow hematological profiles and offspring physiology and vitality in two beef breeds

    Get PDF
    This experiment evaluated the effects of subnutrition during early gestation on hematology in cows (Bos Taurus) and on hematological, metabolic, endocrine, and vitality parameters in their calves. Parda de Montaña and Pirenaica dams were inseminated and assigned to either a control (CONTROL, 100% requirements) or a nutrient‐restricted group (SUBNUT, 65%) during the first third of gestation. Dam blood samples were collected on days 20 and 253 of gestation, and calf samples were obtained during the first days of life. Pirenaica dams presented higher red series parameters than Parda de Montaña dams, both in the first and the last months of gestation. During early pregnancy, granulocyte numbers and mean corpuscular hemoglobin were lower in Pirenaica‐SUBNUT than in Pirenaica‐CONTROL cows. Calves from the SUBNUT cows did not show a physiological reduction in red series values in early life, suggesting later maturation of the hematopoietic system. Poor maternal nutrition affected calf endocrine parameters. Newborns from dystocic parturitions showed lower NEFA concentrations and weaker vitality responses. In conclusion, maternal nutrition had short‐term effects on cow hematology, Pirenaica cows showing a higher susceptibility to undernutrition; and a long‐term effect on their offspring endocrinology, SUBNUT newborns showing lower levels of IGF‐1 and higher levels of cortisol.This work was supported by the Spanish Ministry of Economy and Business and the European Union Regional Development Funds (INIA RTA 2013‐00059‐C02 and INIA RZP 2015‐001) and the Government of Aragon under the Grant Research Group Funds (A14_17R). A. Noya received a PhD grant from INIA‐Government of Aragon

    Energy-momentum diffusion from spacetime discreteness

    Full text link
    We study potentially observable consequences of spatiotemporal discreteness for the motion of massive and massless particles. First we describe some simple intrinsic models for the motion of a massive point particle in a fixed causal set background. At large scales, the microscopic swerves induced by the underlying atomicity manifest themselves as a Lorentz invariant diffusion in energy-momentum governed by a single phenomenological parameter, and we derive in full the corresponding diffusion equation. Inspired by the simplicity of the result, we then derive the most general Lorentz invariant diffusion equation for a massless particle, which turns out to contain two phenomenological parameters describing, respectively, diffusion and drift in the particle's energy. The particles do not leave the light cone however: their worldlines continue to be null geodesics. Finally, we deduce bounds on the drift and diffusion constants for photons from the blackbody nature of the spectrum of the cosmic microwave background radiation.Comment: 13 pages, 4 figures, corrected minor typos and updated to match published versio

    Asymptotics for a special solution to the second member of the Painleve I hierarchy

    Full text link
    We study the asymptotic behavior of a special smooth solution y(x,t) to the second member of the Painleve I hierarchy. This solution arises in random matrix theory and in the study of Hamiltonian perturbations of hyperbolic equations. The asymptotic behavior of y(x,t) if x\to \pm\infty (for fixed t) is known and relatively simple, but it turns out to be more subtle when x and t tend to infinity simultaneously. We distinguish a region of algebraic asymptotic behavior and a region of elliptic asymptotic behavior, and we obtain rigorous asymptotics in both regions. We also discuss two critical transitional asymptotic regimes.Comment: 19 page

    The Random Discrete Action for 2-Dimensional Spacetime

    Full text link
    A one-parameter family of random variables, called the Discrete Action, is defined for a 2-dimensional Lorentzian spacetime of finite volume. The single parameter is a discreteness scale. The expectation value of this Discrete Action is calculated for various regions of 2D Minkowski spacetime. When a causally convex region of 2D Minkowski spacetime is divided into subregions using null lines the mean of the Discrete Action is equal to the alternating sum of the numbers of vertices, edges and faces of the null tiling, up to corrections that tend to zero as the discreteness scale is taken to zero. This result is used to predict that the mean of the Discrete Action of the flat Lorentzian cylinder is zero up to corrections, which is verified. The ``topological'' character of the Discrete Action breaks down for causally convex regions of the flat trousers spacetime that contain the singularity and for non-causally convex rectangles.Comment: 20 pages, 10 figures, Typos correcte

    Competition of Spin-Fluctuations and Phonons in Superconductivity of ZrZn2

    Full text link
    It has been long suspected that spin fluctuations in the weak itinerant ferromagnet ZrZn2 may lead to a triplet superconductivity in this material. Here we point out another possibility, a spatially inhomogeneous singlet superconducting state (a Fulde-Ferrell-Larkin-Ovchinnikov state). We report detailed electronic structure calculations, as well as calculations of the zone center phonons and their coupling with electrons. We find that the exchange splitting is nonuniform and may allow for gap formation at some parts of the Fermi surface. We also find that there is substantial coupling of Zr rattling modes with electrons, which can, in principle, provide the necessary pairing in the s-channel.Comment: 4 pages, embedded color postscript figures. JPEG versions available from the author

    The Magnetic Phase Diagram and the Pressure and Field Dependence of the Fermi Surface in UGe2_2

    Full text link
    The ac susceptibility and de Haas-van Alphen (dHvA) effect in UGe2_2 are measured at pressures {\it P} up to 17.7 kbar for the magnetic field {\it B} parallel to the {\it a} axis, which is the easy axis of magnetization. Two anomalies are observed at {\it Bx_x}({\it P}) and {\it B}m_m({\it P}) ({\it Bx_x} >> {\it B}m_m at any {\it P}), and the {\it P}-{\it B} phase diagram is presented. The Fermi surface and quasiparticle mass are found to vary smoothly with pressure up to 17.7 kbar unless the phase boundary {\it Bx_x}({\it P}) is crossed. The observed dHvA frequencies may be grouped into three according to their pressure dependences, which are largely positive, nearly constant or negative. It is suggested that the quasiparticle mass moderately increases as the boundary {\it Bx_x}({\it P}) is approached. DHvA effect measurements are also performed across the boundary at 16.8 kbar.Comment: to be published in Phys. Rev.
    • 

    corecore