56 research outputs found

    Advancing Genomics in Urologic Tumors: Navigating Precision Therapeutic Pathways

    Get PDF
    Urologic cancers, with bladder cancer as a pivotal subtype, pose substantial challenges to global health, necessitating a profound understanding of their molecular underpinnings. This article explores recent genomic research, with a focus on transitional cell carcinoma, the primary histological form of transitional cell carcinoma, aiming to elucidate the intricate molecular processes that underlie the onset and advancement of disease. Leveraging advanced genomic and transcriptomic analyses such as next-generation sequencing (NGS) and molecular subtyping techniques, this review delves into the diverse genetic and molecular subtypes inherent in bladder cancer. It emphasizes the critical role of molecular subtyping in guiding treatment decisions and refining patient stratification for precision medicine approaches. Furthermore, the review examines emerging diagnostic biomarkers such as methylation markers and single nucleotide polymorphism (SNP) sites, highlighting their potential in enabling early detection and targeted therapies. Their integration promises to enhance diagnostic accuracy and therapeutic monitoring in bladder cancer patients. Collaboration among multidisciplinary teams comprising clinicians, researchers, and bioinformaticians is paramount for unraveling the molecular complexities of urologic cancers and advancing personalized cancer care. This thorough review seeks to offer a detailed examination of the existing understanding on urologic oncology, offering valuable insights into the molecular intricacies of urothelial carcinoma and while also laying the groundwork for future research directions aimed at optimizing patient outcomes globally

    Computational and Pharmacological Evaluation of Carveol for Antidiabetic Potential

    Get PDF
    © Copyright © 2020 Ahmed, Khan, Kury and Shah. Background: Carveol is a natural drug product present in the essential oils of orange peel, dill, and caraway seeds. The seed oil of Carum Carvi has been reported to be antioxidant, anti-inflammatory, anti-hyperlipidemic, antidiabetic, and hepatoprotective. Methods: The antidiabetic potential of carveol was investigated by employing in-vitro, in-vivo, and in-silico approaches. Moreover, alpha-amylase inhibitory assay and an alloxan-induced diabetes model were used for in-vitro and in-vivo analysis, respectively. Results: Carveol showed its maximum energy values (≥ -7 Kcal/mol) against sodium-glucose co-transporter, aldose reductase, and sucrose-isomaltase intestinal, whereas it exhibited intermediate energy values (≥ -6 Kcal/mol) against C-alpha glucosidase, glycogen synthase kinases-3β, fructose-1,6-bisphosphatase, phosphoenolpyruvate carboxykinase, and other targets according to in-silico analysis. Similarly, carveol showed lower energy values (≥ 6.4 Kcal/mol) against phosphoenolpyruvate carboxykinase and glycogen synthase kinase-3β. The in-vitro assay demonstrated that carveol inhibits alpha-amylase activity concentration-dependently. Carveol attenuated the in-vivo alloxan-induced (1055.8 µMol/Kg) blood glucose level in a dose- and time-dependent manner (days 1, 3, 6, 9, and 12), compared to the diabetic control group, and further, these results are comparable with the metformin positive control group. Carveol at 394.1 µMol/Kg improved oral glucose tolerance overload in rats compared to the hyperglycemic diabetic control group. Moreover, carveol also attenuated the glycosylated hemoglobin level along with mediating anti-hyperlipidemic and hepatoprotective effects in alloxan-induced diabetic animals. Conclusions: This study reveals that carveol exhibited binding affinity against different targets involved in diabetes and has antidiabetic, anti-hyperlipidemic, and hepatoprotective actions

    Factors associated with non-adherence among psychiatric patients at a tertiary care hospital, Karachi, Pakistan: a questionnaire based cross-sectional study

    Get PDF
    OBJECTIVE: To elucidate predictors of non-adherence among psychiatric patients presenting at a tertiary care hospital of Pakistan, for follow-up with consultant psychiatrist. METHODS: A convenient sampleof psychiatric patients from Aga Khan University Hospital was enrolled between April and May, 2005. An interviewer assisted, standardized questionnaire was used for data collection. Patients with cognitive deficit or psychosis and those presenting for the first time were not included in the study. RESULTS: Out of 128 patients, those with co-morbidity (32.81%) were less adherent than those without comorbidity (p-value:0.002). Adherence among depressed was 61.53%; psychotic was 58.82%; bipolar disorder was 73.91%. Reasons for non-adherence included sedation (30%), medication cost (22%), forgot to take medication (36%); and inability of the physicians to explain timing and dose (92%) or benefit of medication (76%). CONCLUSIONS: Non-adherence is a common and important issue. Treatment cost and co-morbidity should be reviewed in order to keep the medication regime affordable and comprehensible

    Post-Treatment of Synthetic Polyphenolic 1,3,4 Oxadiazole Compound A3, Attenuated Ischemic Stroke-Induced Neuroinflammation and Neurodegeneration

    Get PDF
    Ischemic stroke is categorized by either permanent or transient blood flow obstruction, impeding the distribution of oxygen and essential nutrients to the brain. In this study, we examined the neuroprotective effects of compound A3, a synthetic polyphenolic drug product, against ischemic brain injury by employing an animal model of permanent middle cerebral artery occlusion (p-MCAO). Ischemic stroke induced significant elevation in the levels of reactive oxygen species and, ultimately, provoked inflammatory cascade. Here, we demonstrated that A3 upregulated the endogenous antioxidant enzymes, such as glutathione s-transferase (GST), glutathione (GSH), and reversed the ischemic-stroke-induced nitric oxide (NO) and lipid peroxidation (LPO) elevation in the peri-infarct cortical and striatal tissue, through the activation of endogenous antioxidant nuclear factor E2-related factor or nuclear factor erythroid 2 (Nrf2). In addition, A3 attenuated neuroinflammatory markers such as ionized calcium-binding adapter molecule-1 (Iba-1), cyclooxygenase-2 (COX-2), tumor necrotic factor-α (TNF-α), toll-like receptors (TLR4), and nuclear factor-κB (NF-κB) by down-regulating p-JNK as evidenced by immunohistochemical results. Moreover, treatment with A3 reduced the infarction area and neurobehavioral deficits. We employed ATRA to antagonize Nrf2, which abrogated the neuroprotective effects of A3 to further assess the possible involvement of the Nrf2 pathway, as demonstrated by increased infarction and hyperexpression of inflammatory markers. Together, our findings suggested that A3 could activate Nrf2, which in turn regulates the downstream antioxidants, eventually mitigating MCAO-induced neuroinflammation and neurodegeneration

    Benzimidazole containing acetamide derivatives attenuate neuroinflammation and oxidative stress in ethanol-induced neurodegeneration

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Oxidative stress-induced neuroinflammation is the prominent feature of neurodegenerative disorders, and is characterized by a gradual decline of structure and function of neurons. Many biochemical events emerge thanks to the result of this neurodegeneration, and ultimately provoke neuroinflammation, activation of microglia, and oxidative stress, leading to neuronal death. This cascade not only explains the complexity of events taking place across different stages, but also depicts the need for more effective therapeutic agents. The present study was designed to investigate the neuroprotective effects of newly synthesized benzimidazole containing acetamide derivatives, 3a (2-(4-methoxyanilino)-N-[1-(4-methylbenzene-1-sulfonyl)-1H-benzimidazol-2-yl] acetamide) and 3b (2-(Dodecylamino)-N-[1-(4-methylbenzene-1-sulfonyl)-1H-benzimidazol-2-yl] acetamide) against ethanol-induced neurodegeneration in the rat model. Both derivatives were characterized spectroscopically by proton NMR (1H-NMR) and carbon-13 NMR (13C-NMR) and evaluated for neuroprotective potential using different pharmacological approaches. In vivo experiments demonstrated that ethanol triggered neurodegeneration characterized by impaired antioxidant enzymes and elevated oxidative stress. Furthermore, ethanol administration induced neuroinflammation, as demonstrated by elevated expression of tumor necrotic factor (TNF-α), nuclear factor κB (NF-κB), cyclooxygenase-2 (COX2), and ionized calcium-binding adapter molecule-1 (Iba-1), which was further validated by enzyme-linked immunosorbent assay (ELISA). Treatment with 3a and 3b ameliorated the ethanol-induced oxidative stress, neuroinflammation, and memory impairment. The affinity of synthesized derivatives towards various receptors involved in neurodegeneration was assessed through docking analysis. The versatile nature of benzimidazole nucleus and its affinity toward several receptors suggested that it could be a multistep targeting neuroprotectant. As repetitive clinical trials of neuroprotectants targeting a single step of the pathological process have failed previously, our results suggested that a neuroprotective strategy of acting at different stages may be more advantageous to intervene in the vicious cycles of neuroinflammation

    Ginkgo biloba Extract Protects against Methotrexate-Induced Hepatotoxicity: A Computational and Pharmacological Approach

    Get PDF
    Ginkgo biloba extract possess several promising biological activities; currently, it is clinically employed in the management of several diseases. This research work aimed to extrapolate the antioxidant and anti-inflammatory effects of Ginkgo biloba (Gb) in methotrexate (MTX)-induced liver toxicity model. These effects were analyzed using different in vivo experimental approaches and by bioinformatics analysis. Male SD rats were grouped as follows: saline; MTX; Gb (pretreated for seven days with 60, 120, and 180 mg/kg daily dose before MTX treatment); silymarin (followed by MTX treatment); Gb 180 mg/kg daily only; and silymarin only. Histopathological results revealed that MTX induced marked hepatic injury, associated with a substantial surge in various hepatic enzymes such as alanine transaminase (ALT), aspartate transaminase (AST), and serum alkaline phosphatase (ALP). Furthermore, MTX caused the triggering of oxidative distress associated with a depressed antioxidant system. All these injury markers contributed to a significant release of apoptotic (caspase-3 and c-Jun N-terminal kinases (JNK)) and tumor necrosis factor (TNF-α)-like inflammatory mediators. Treatment with Gb counteracts MTX-mediated apoptosis and inflammation dose-dependently along with modulating the innate antioxidative mechanisms such as glutathione (GSH) and glutathione S-transferase (GST). These results were further supplemented by in silico study to analyze drug-receptor interactions (for several Gb constituents and target proteins) stabilized by a low energy value and with a good number of hydrogen bonds. These findings demonstrated that Gb could ameliorate MTX-induced elevated liver reactive oxygen species (ROS) and inflammation, possibly by JNK and TNF-α modulation

    Carveol Promotes Nrf2 Contribution in Depressive Disorders through an Anti-inflammatory Mechanism

    Get PDF
    Major depressive disorder (MDD) is a progressive deteriorating mental state with a feeling of worthlessness and frequent mood swings. Several studies reported the favorable effects of natural drug substances on MMD associated oxidative stress and neuroinflammation. The present study is attempted to examine whether carveol could affect lipopolysaccharide- (LPS-) induced depression, and if so, how nuclear factor E2-related factor (Nrf2) contributed to the neuroprotective effects of carveol mechanistically. Two experimental cohorts were used using the SD rats: first to evaluate the promising dose of carveol (whether 20 mg/kg or 50 mg/kg) and secondly to determine the effect of carveol on Nrf2-mediated antidepression. Significant neuronal alterations were noticed in the cortex and hippocampus regions in the LPS-treated group, accompanied by elevated inflammatory cytokine levels such as tumor necrosis factor-alpha (TNF-α), cyclooxygenase (COX-2), and c-Jun N-terminal kinase (p-JNK). Moreover, amassing of free radicals exacerbated lipid peroxidase (LPO) and oxidative stress with a limited antioxidant capacity. Carveol (20 mg/kg) significantly ameliorated these detrimental effects by promoting the antioxidant Nrf2 gene and protein, which critically regulate the downstream antioxidant and anti-inflammatory pathway. To further elaborate our hypothesis, we employed all-trans retinoic acid (ATRA), an Nrf2 inhibitor, and we found that ATRA exaggerated LPS-induced depressive-like effects associated with elevated neuroinflammatory markers. Our results demonstrated that carveol (20 mg/kg) could activate the endogenous antioxidant Nrf2, which regulates the downstream antioxidant signaling pathway, eventually leading to amelioration of LPS-induced neuroinflammation and neurodegeneration

    Janitorial Services of Pak Army Hospitals, a Critical Analysis

    Get PDF
    Objective: To identify the existing system of janitorial services in the army hospitals, and to give recommendations for standardized policy formulation in military hospitals. Study Design: Cross-sectional study. Place and Duration of Study: Tertiary Care Hospitals, namely Hospital A, B and C, at Rawalpindi Pakistan, from Oct 2019 Jan 2020. Methodology: Responses from 401 Healthcare Administrators (HCAs), Nurses and Janitorial staff were collected through a validated questionnaire, and hospitals' documents/ SOPs, cleaning audit reports, feedback process documents, communication mechanisms and training schedules were reviewed. Results: Out of 401 respondents, the majority were females (54.4%, 5 were HCAs, 143 were Nurses, and 70 were Janitorial staff). The availability of SOPs was associated with cleaning functional areas of hospitals (p=0.001). Awareness of the risk of infection among healthcare workers was associated with Hepatitis B vaccination (p=0.03). Knowledge of hospital areas regarding cleanliness among hospital workers was linked to providing cleanliness training according to job requirements (p=0.001). Conclusion: Hospital A performed admirably in most areas but was found to need more human resources, with staff shortages, high turnover, and a lack of adherence to SOPs. To achieve optimum performance, existing and emerging technology must be integrated with sanitary worker preparation and career development; costs must be reduced. Keywords: Hospital environment, Infection control and disinfectants, Janitorial service, Training

    Carveol Attenuates Seizure Severity and Neuroinflammation in Pentylenetetrazole-Kindled Epileptic Rats by Regulating the Nrf2 Signaling Pathway

    Get PDF
    Epilepsy is a neurodegenerative brain disorder characterized by recurrent seizure attacks. Numerous studies have suggested a strong correlation between oxidative stress and neuroinflammation in several neurodegenerative disorders including epilepsy. This study is aimed at investigating the neuroprotective effects of the natural compound carveol against pentylenetetrazole- (PTZ-) induced kindling and seizure model. Two different doses of carveol (10 mg/kg and 20 mg/kg) were administered to male rats to determine the effects and the effective dose of carveol and to further demonstrate the mechanism of action of nuclear factor E2-related factor (Nrf2) in PTZ-induced kindling model. Our results demonstrated reduced levels of innate antioxidants such as superoxide dismutase (SOD), catalase, glutathione-S-transferase (GST), and glutathione (GSH), associated with elevated lipid peroxidation (LPO) and inflammatory cytokines level such as tumor necrosis factor-alpha (TNF-α), and mediators like cyclooxygenase (COX-2) and nuclear factor kappa B (NFκB). These detrimental effects exacerbated oxidative stress and provoked a marked neuronal alteration in the cortex and hippocampus of PTZ-intoxicated animals that were associated with upregulated Nrf2 gene expression. Furthermore, carveol treatment positively modulated the antioxidant gene Nrf2 and its downstream target HO-1. To further investigate the role of Nrf2, an inhibitor of Nrf2 called all-trans retinoic acid (ATRA) was used, which further exacerbated PTZ toxicity. Moreover, carveol treatment induced cholinergic system activation by mitigating acetylcholinesterase level which is further linked to attenuated neuroinflammatory cascade. The extent of blood-brain barrier disruption was evaluated based on vascular endothelial growth factor (VEGF) expression. Taken together, our findings suggest that carveol acts as an Nrf2 activator and therefore induces downstream antioxidants and mitigates inflammatory insults through multiple pathways. This eventually alleviates PTZ-induced neuroinflammation and neurodegeneration
    • …
    corecore