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Research Article
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Major depressive disorder (MDD) is a progressive deteriorating mental state with a feeling of worthlessness and frequent mood
swings. Several studies reported the favorable effects of natural drug substances on MMD associated oxidative stress and
neuroinflammation. The present study is attempted to examine whether carveol could affect lipopolysaccharide- (LPS-)
induced depression, and if so, how nuclear factor E2-related factor (Nrf2) contributed to the neuroprotective effects of carveol
mechanistically. Two experimental cohorts were used using the SD rats: first to evaluate the promising dose of carveol
(whether 20mg/kg or 50mg/kg) and secondly to determine the effect of carveol on Nrf2-mediated antidepression. Significant
neuronal alterations were noticed in the cortex and hippocampus regions in the LPS-treated group, accompanied by elevated
inflammatory cytokine levels such as tumor necrosis factor-alpha (TNF-α), cyclooxygenase (COX-2), and c-Jun N-terminal
kinase (p-JNK). Moreover, amassing of free radicals exacerbated lipid peroxidase (LPO) and oxidative stress with a limited
antioxidant capacity. Carveol (20mg/kg) significantly ameliorated these detrimental effects by promoting the antioxidant Nrf2
gene and protein, which critically regulate the downstream antioxidant and anti-inflammatory pathway. To further elaborate
our hypothesis, we employed all-trans retinoic acid (ATRA), an Nrf2 inhibitor, and we found that ATRA exaggerated LPS-
induced depressive-like effects associated with elevated neuroinflammatory markers. Our results demonstrated that carveol
(20mg/kg) could activate the endogenous antioxidant Nrf2, which regulates the downstream antioxidant signaling pathway,
eventually leading to amelioration of LPS-induced neuroinflammation and neurodegeneration.

1. Introduction

Depressive disorders like major depression or MDD are the
leading human problem with multifactorial abnormalities
ranging frommood, emotion, and cognitive deficits along with

recurrent thoughts of suicide [1, 2]. Depression is increasingly
becoming a social and economic problem that costs billions of
dollars [3], and up to 60% of suicidal cases could be linked to
depressive-like symptoms [4]. Although, depression has been
declared as a major contributor to the total burden of world
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diseases by WHO [5], very little is known about the exact eti-
ological cause and underlying pathophysiology. Moreover,
several conditions such as stress exposure, metabolic and hor-
monal disorders, and drug addiction can precipitate the symp-
toms. Serotonin and/or norepinephrine-based drugs are
extensively used so far, but the effectiveness of such antide-
pressant drugs is shrinking due to the unpredictable responses
and their low recovery ratio. Therefore, looking into the risk-
benefit ratio, subsequent alternatives are the demand of the
day [6]. Furthermore, the complex mechanisms of existing
antidepressant therapy along with poor prognosis aid in poor
compliance. It is therefore need of the time to unveil alterna-
tive strategies to develop novel approaches for this purpose [7].

Neuroinflammation is involved in potentiating the severity
of MDD, which is consistently reiterated in the literature [8, 9].
The surge in inflammatory mediators and cytokines cause the
penetration of macrophages into the brain, validating the mac-
rophage theory of depression [10]. Similarly, other research
studies also implicated the role of inflammatory cascades in
the pathophysiology of depression in both laboratory animals
and meta-analysis of postmortem brain tissue samples [11,
12]. Furthermore, treatment with conventional antidepressants
such as selective serotonin reuptake inhibitors (SSRIs) can
reverse the elevated level of cytokine in addition to favorable
outcomes on depression [13, 14]. However, other non-SSRIs
can be used for the management of depression with no impact
on cytokines [15]. This discrepancy is attributed to the hetero-
genetic nature of depressive disorders as MDD triggers
proinflammatory cytokines [16, 17]. Maes et al. described
inflammation as vital in propagating depression pathogenesis
[18] as inflammatory cytokines trigger behavioral and cognitive
deficits [19, 20], impaired neurotransmitter metabolism, and
decrease neuroplasticity [21, 22]. Furthermore, the administra-
tion of lipopolysaccharide (LPS) can induce behavioral alter-
ations in animals similar to that in humans [23, 24]. Based on
these shreds of evidence, we used a well-studied inflammation
inducer, lipopolysaccharide (LPS) to induce neuroinflamma-
tion, neurodegeneration, and behavioral deficits and thereby
use it as a model of anxiety and depression in rodents [25–27].

It is well known that the cellular defense mechanism of
the body involves the endogenous transcription factor
nuclear factor erythroid 2-related factor 2 (Nrf2) against
inflammation and oxidative stress. Nrf2 and Nrf2-mediated
phase-II antioxidant enzymes have been well studied for
their therapeutic role in the treatment of various neuronal
disorders [28]. Furthermore, the contribution of Nrf2 in
inflammation or inflammation-induced disorders such as
stroke and other disorders is well documented in previous
studies [29–31]. Therefore, dysregulation of the Nrf2 signal-
ing pathway may cause increased susceptibility of the tissue
to detrimental effects of oxidative stress and inflammatory
mediators [32, 33]. Moreover, several research bodies have
reported the neurotherapeutic role of Nrf2 and its down-
stream signaling in animal models of various neurological
disorders [34]. Previously, it has been demonstrated that
Nrf2 plays a crucial role in the pathophysiology of depres-
sion via regulating oxidative stress and inflammatory pro-
cesses [35, 36]. Hence, targeting Nrf2 might be considered

one of the potential pharmacological approaches for the
inquisition of depressive behaviors.

Recently, studies suggest that food and nutritional supple-
ment canmodulate depressive-like symptoms [37–41], further
supported by human meta-analyses [42, 43]. In line with these
studies, natural moieties based on their rich antioxidant
potential are frequently investigated as these drugs have ther-
apeutic potential against many stress mediators, including
inflammatory factors and free radical species [44]. Carveol,
essential oil has previously demonstrated antidiabetic poten-
tial possibly by attenuating oxidative stress [45]. Furthermore,
carveol has shown neuroprotective potential in the ischemic
brain injury model by ameliorating the infarction area by
promoting the Nrf2 pathway [33]. Also, carveol also demon-
strated attenuation of memory impairment and behavioral
deficits in rodent model possibly by ameliorating oxidative
stress [46]. In another study, Zhang et al. reviewed that carveol
and similar other natural oils mitigate depression-like symp-
toms [47]. Recently, we demonstrated that carveol attenuated
acetaminophen-induced liver toxicity bymodulatingNrf2 cas-
cade and inflammatory cytokines [48]. Taking into account
the pharmacological value of natural essential oils and the
search for alternate drug therapy for depressive behaviors,
the current study was designed to investigate the potential role
of carveol against LPS-induced behavioral deficits, neuroin-
flammatory signals, and neurodegeneration in an animal
model of rodents. Herein, we for the first time showed that
carveol mediates its antidepressant and anxiolytic effect by
regulating Nrf2 and its downstream inflammatory cascades.

2. Material and Methods

2.1. Chemicals and Reagents. All the chemicals and drugs such
as carveol catalog number (192384-10G), all-trans retinoic acid
(ATRA) trichloroacetic acid (TCA), 5,5′-Dithio-bis-(2-nitro-
benzoic acid) (DTNB), glutathione (GSH), 1-Chloro-2,4-dini-
trobenzene (CDNP), LPS, N-(1-Naphthyl) ethylenediamine
dihydrochloride, and trichloroacetic acid (TCA) were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). ABC Kit
and primary antibodies were purchased from Santa Cruz Bio-
technology such as an anti-HO-1monoclonal antibody (mouse
source, SC-136960), anti-Nrf2 (rabbit polyclonal, SC-722),
anti-p-JNK (mouse monoclonal, SC-6254), anti-Bcl-2 (mouse
monoclonal, sc-7382), and anti-COX-2 (mouse monoclonal,
SC-514489). The secondary antibody (ab-6789) was purchased
fromAbcam (UK). The ELISA kits for Nrf2 (Cat # SU-B30429)
and p-NF-κB (Cat # SUB28069) were purchased from China
(Shanghai Yuchun Biotechnology), and HO-1 (Cat # E-EL-
R0488) and TNF-α (Cat # E-EL-R0019) ELISA kits were pur-
chased from Elabscience.

2.2. Animals and Drug Treatment. The male Sprague Dawley
rats having average body weight ranging from 180 to 200 g
were kept in a condition of a 12-hour light and dark cycle
with access to water and food in the animal house facility.
The animals were provided standard temperature and
humidity according to the standard laboratory protocols,
similar to the ARRIVE guidelines. All the experiments were
performed according to the standard protocols, Riphah
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Institute of Pharmaceutical Sciences (RIPS), Islamabad (Ref-
erence No: REC/RIPS/2020/07). The animals were acclima-
tized with the animal house facility before experimental
procedures. The body weights were measured throughout
the experimental period. The animals were divided into
two experimental groups (a total of 80 animals) as follows
(Figure 1).

2.3. Experimental Cohort 1. The first cohort was used to
determine the effective dose of carveol (n = 10 animals/
group) and consisted of saline, LPS, two carveol treatment
groups with LPS as carveol 20mg/kg (CAR 20) and carveol
50mg/kg (CAR 50), and fluoxetine (5mg/kg) with LPS.
Saline, carveol, and fluoxetine were administered for 5 days
as a single intraperitoneal dose (i.p), while LPS was adminis-
tered on the 3rd and 4th day of the regimen either as a single
dose or after carveol at a dose of 1mg/kg, i.p, and fluoxetine
injection as our previously reported data [27].

2.4. Experimental Cohort 2. The second cohort was used to
determine the Nrf2 role and included three subgroupings
(n = 10/group): ATRA in combination with LPS, carveol in
combination with the ATRA + LPS group, and fluoxetine
in combination with ATRA + LPS. ATRA was injected at
least 30min before LPS (i.p.).

2.5. Behavioral Studies. A gap period of at least 2 days was
mentioned between each behavioral study.

2.5.1. Sucrose Splash Test (SST). The measurements were
performed according to a standardized protocol as previ-
ously discussed [27]. The SST test was performed by spray-
ing sucrose, and the typical parameters were recorded for
5min, including licking and scraping the body to wash away
the solution.

2.5.2. Elevated Plus-Maze (EPM) Test. The LPS-mediated
anxiety was measured by an EPM test using a framework
located about 50 cm above the floor. The EPM test was per-
formed by keeping each rat in the middle of the platform,
and the number of entries and time spent was recorded [49].

2.5.3. Light-Dark Box (LDB) Test. For the evaluation of
anxiety-like behavior, the LDB test was performed using
the customized light-dark box. The LDB is composed of
light and dark compartments partitioned by a small gap or
entry point. The test was performed by placing each experi-
mental animal in the dark compartment of the light-dark
box and was allowed to move freely in the box for 5min.
The data was recorded (videotaped), and the total number
of entries in each compartment was noted. After completion
of each test, the box was cleaned using alcohol to minimize
the olfactory cues [50].

2.5.4. Forced Swim Test (FST). The forced swim test was per-
formed to evaluate the depression level in rats. The rat was
placed in a Plexiglas cylinder which was 70 cm in height
and 30 cm in diameter, at a specific temperature of 23 ± 1
°C. A preswim exposure test was performed 24 h before the
test to delineate the antidepressant-like activity. The use of
a preswim ensures that the rats quickly adopt an immobile

posture on the test day, which enables the effect of the tested
compounds to be more easily observed. The test was per-
formed by filling the cylinder with water (above 30 cm
height) at 23 ± 1°C temperature and videotaped for 7min.
The final 4min time of the test was randomly assessed at
5 s intervals for various parameters such as immobility.

2.6. Antioxidant Assays

2.6.1. Determination of Lipid Peroxidation (LPO). This assay
was performed according to our previously established labo-
ratory protocol [51]. The tissue was homogenized in lysis
buffer. The tissue homogenate was centrifuged, and the
supernatant was further mixed with freshly prepared ammo-
nium sulphate solution. After the addition of TBA, the
absorbance was recorded at 532 nm.

2.6.2. Reduced Glutathione (GSH) Level. The GSH assay was
performed as previously described [52]. The 5,5′-Dithiobis-
2-nitrobenzoic acid (DTNB) 0.6mM was added to the 6.6μL
sample, and the GSH level was measured as described previ-
ously [52]. The absorbance was recorded at 412 (nm) wave-
length using a microplate reader.

2.6.3. Glutathione S-Transferase (GST) Activity. The GST
assay was performed for the activity of GST using the 1-
Chloro-2,4-dinitrobenzene (CDNB) as a substrate as previ-
ously reported [53]. The assay protocol includes that each well
was filled with 10μL of 1mM CDNB, 10μL of 5mM reduced
glutathione, 270μL of buffer solution, and 10μL of the sample.
The absorbance was read at 340nm using a plate reader.

2.6.4. Catalase Activity. The catalase assay was performed by
mixing H2O2 and the tissue supernatant. The absorbance
was measured at 240nm wavelength compared with the
blank containing PBS only. The absorbance or catalase activ-
ity is proportional to the degradation of H2O2 to its desired
product. So actually, the assay determines the breakdown of
H2O2 so the results are expressed as μmol H2O2 decom-
posed per mg of protein/min [54].

2.7. Histological Preparation. The rats after behavioral anal-
ysis were decapitated, and the brain was removed. The brain
was fixed, and the blocks were made. After that, we made
three mm thick sections using a sharp blade and fixed in a
4% paraformaldehyde solution. The tissues were embedded
into paraffin blocks and trimmed to 4μm thin coronal sec-
tions using a microtome, and the following staining tech-
niques were applied.

2.8. Hematoxylin and Eosin (H&E) Staining. Starting from
dewaxing/deparaffinization and then rehydration step using
a gradient alcohol series, which was ended by rinsing slides
in distilled water, slides were stained with hematoxylin and
eosin as discussed [55]. Finally, slides were dehydrated,
and color was fixed in xylene and observed by a light micro-
scope (Olympus, Japan).

2.9. Immunohistochemical Analysis. We employed a previ-
ously described procedure with slight modifications for
immunohistochemical analysis [56]. After completion of
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the deparaffinization step, slides were processed by an enzy-
matic method for antigen retrieval and then washed with
PBS consecutively three times for 5min. Slides were
immersed in 3% H2O2 to quench endogenous peroxidase
activity followed by washing with PBS. Normal goat serum
(5%) was applied as a blocking serum, and slides were incu-
bated for 2 h. Next, the slides were incubated overnight with
primary antibodies Bcl2, p-JNK, TNF-α, Nrf2, HO-1, and
COX-2. The next morning, slides were washed with PBS
and incubated for 90min with the secondary antibody, then
incubated with an ABC kit (Santa Cruz) in a humidified box
for 60min. Slides were then washed with PBS solution and
stained with DAB, followed by dehydration with ethanol
(70%, 80%, 90%, and 100%). After dehydration, slides were
fixed with xylene and then cover slipped with mounting
media. Images were obtained using a light microscope and
saved in TIFF format for further quantification by the Ima-
geJ software.

2.10. ELISA Analysis. 50-70mg of cortical and hippocampal
brain tissue was first homogenized and then centrifuged at
15,000 rpm at 4°C to carefully collect the supernatant while
avoiding the pellet. ELISA procedures were performed
according to the manufacturer protocols using an ELISA
microplate reader (BioTek ELx808), and the concentration
(pg/mL) was then normalized to the total protein content
(pg/mg total protein).

2.11. Real-Time Polymerase Chain Reaction (RT-PCR). Total
RNA was extracted from the rat cortical tissue in TRIzol as
discussed previously [57]. 20μL of M-MuLV reverse tran-
scriptase was used to dilute 1 microgram of RNA and used
this mix to synthesize cDNA with a cDNA synthesis kit
(vivantis cDSK01-050 Sdn. Bhd, Malaysia). To estimate the
gene expression of Nrf2 quantitatively, real-time PCR was
performed using the 2X HOT SYBR Green qPCR master

mix (Solar Bio cat # SR1110) and real-time Mic PCR (Bio-
Molecular System) according to the manufacturer specifica-
tions. The sequence of the primers used for amplification
was Nrf2, Forward: CACATCCAGACAGACACCAGT and
Reverse: CTACAAATGGGAATGTCTCTGC; HO-1, For-
ward: CGTGCAGAGAATTCTGAGTTC and Reverse
AGACGCTTTACGTAGTGCTG; and GAPDH, Forward:
AGGTCGGTGTGAACGGATTTG and Reverse: TGTAGA
CCATGTAGTTGAGGTCA. The relative gene expressions
of Nrf2 were determined by the 2^-ΔΔCT method for real-
time quantitative PCR.

2.12. Statistical Analysis. Data were analyzed using Graph-
Pad Prism and were expressed as mean ± standard error of
the mean (SEM). Data were further analyzed by one-way
ANOVA while using post hoc as Bonferroni multiple com-
parisons. p < 0:05 was considered significant. The symbol ∗
shows a significant difference relative to the saline group,
and # shows a significant difference relative to the LPS
group, while † represents a significant difference to ATRA
+ LPS.

3. Results

3.1. Carveol Attenuated LPS-Induced Depression-Like
Behavior. LPS-treatment induced depression-like behavior as
shown by reduced struggling and by immobile nature in the
behavioral FST (Figure 2(a), ∗∗p < 0:01), coexisting with
anxiety-like behavior as entries to the open arms were little
or absent in the EPM test and also the time spent in the open
arms was short suggesting less exploration compared to the
control group (Figure 2(b), ∗∗p < 0:01). In accordance, LPS
caused a greater stay in the dark compartment in the LDB test
(Figure 2(c), ∗∗∗ p < 0:001), while significantly decreased
grooming time in SST (Figure 2(d), ∗∗∗ p < 0:001). Carveol
treatment with 20mg/kg dose reversed all these behavioral

Fluoxetine

Carveol

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5

Weighing of
animals

Rat
Cohort 1

Cohort 2

LPS LPS

ATRA+LPS ATRA+LPS

Animals sacrificed for brain 
dissections

Behavioral
evaluation

FST LDB EPM SST RT PCR Elisa Immunohistochemistry Oxidative
stress

Experiment layout

Figure 1: Experimental outline.
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Figure 2: Effects of carveol (CAR) on LPS-induced behavioral deficits. Effect of CAR and LPS on the FST test (a), EPM (b), LDB (c), and SST (d).
Data are expressed as means ± SEM and analyzed by one-way ANOVA followed by Bonferroni multiple comparisons test using the GraphPad
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group; ## p < 0:01 and #p < 0:05 indicate a significant difference compared to the LPS group. †p < 0:05 is compared to ATRA+LPS. CAR:
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alterations in the FST (Figure 2(a), #p < 0:05) and in the EPM
test (Figure 2(b), #p < 0:05), increased time spent in light com-
partment in LDB (Figure 2(c), #p < 0:05), and increased the
grooming time (Figure 2(d), #p < 0:05) in SST. Similarly, treat-
ment with carveol (50mg/kg) produces the same effects in all
these behavioral sets. Furthermore, cotreatment of LPS with
ATRA exacerbated the anxiety-like behavioral deficits, while
administration of carveol in this second cohort study did not
elicit any ameliorative effects on LPS-induced depression-like
behavior in the ATRA-treated groups.

3.2. Carveol Reversed LPS-Induced Cellular Damage. We
performed HE staining to determine the rate and extent of
neuronal cell death in response to LPS treatment, and we
observed significant variations in neuronal shape and size
(∗∗∗ p < 0:001, Figure 3), compared to the saline group.
The saline group exhibited normal morphological architec-
ture of cell shape with no change in color staining, and there
was no vacuole formation (Figure 3). Moreover, multiple
vacuoles were noted in the LPS-treated groups associated
with inflammatory infiltrated cells. Carveol administration
mitigated these changes, and a higher degree of cellular
integrity was evident in the carveol- (20mg/kg-) treated
group (Figure 3, ##p < 0:01). Furthermore, coadministration
of LPS and ATRA exacerbated the histopathological changes
while pretreatment of carveol in the ATRA-treated groups
did not show any significant alteration in the LPS-induced
histopathological changes.

3.3. Carveol Attenuated LPS-Induced Apoptosis Markers. To
further evaluate the antiapoptotic properties of carveol, we
performed immunohistochemistry analysis for antiapoptotic
factor Bcl-2 and apoptosis-linked p-JNK (Figure 4(a)). The
expression of the Bcl-2 protein was decreased (Figure 4(a),
∗∗p < 0:01), coexisting with an upregulated p-JNK level in
the LPS-treated group (Figure 4(b), ∗∗p < 0:01). However,
treatment with carveol reverts these changes in the LPS
group. Moreover, carveol pretreatment did not attenuate
the LPS-induced apoptosis in the cortex of the ATRA-
treated groups.

3.4. Carveol Augmented the Antioxidant Potential of the
Brain by Promoting the Nrf2 Signaling Pathway. The mech-
anism of antioxidant capacity of carveol was determined by
investigating the Nrf2 gene and Nrf2 protein and its down-
stream signaling HO-1 gene and protein. Real-time PCR
analysis showed that LPS treatment significantly reduced
the expression level of Nrf2 and HO-1 compared to that of
the control group (Figure 5(a), ∗p < 0:05). To further vali-
date, we performed ELISA (Figure 5(b), ∗p < 0:05) and
immunohistochemistry analysis (Figure 5(c), ∗∗p < 0:01),
and consistent results were obtained. Likely, the downregu-
lated proteins of Nrf2, antioxidant protein HO-1 expression
was also significantly attenuated in the cortex and hippo-
campus of the LPS-treated group compared to that of the
saline group (Figures 5(d)–5(f)). Administration of carveol
along with LPS, induced upregulation of Nrf2 and HO-1
genes relative to that of the LPS group (Figures 5(a) and
5(d), ##p < 0:01). Furthermore, noticeably elevated levels of

Nrf2 and HO-1 were also observed using ELISA and immu-
nohistochemistry (Figures 5(b), 5(c), 5(e), and 5(f)). How-
ever, the carveol-mediated upregulation of the antioxidant
proteins Nrf2 or HO-1 was not observed in the ATRA-
treated groups. These results suggest that carveol might pos-
sess potential antioxidant activity via activation of the Nrf2
and its downstream proteins like HO-1.

3.5. Carveol Inhibits LPS-Induced Neuroinflammation. The
role of inflammatory mediators in depression studies is well
documented; therefore, we also sought to investigate
whether carveol treatment can be effective against neuroin-
flammation. We studied the protein expression of inflamma-
tory markers such as p-NFkB, COX-2, and TNF-α using
ELISA and immunohistochemistry analysis. Our results
showed that the levels of p-NFkB, TNF-α, and COX-2 were
significantly increased in the LPS group compared to that of
the saline group (Figures 6(a)–6(c)). Pretreatment of carveol
induced a marked downregulation of p-NFkB (Figure 6(a),
#p < 0:05) and TNF-α (Figure 6(b), #p < 0:05) in the cortex
and COX-2 (Figure 6(c), #p < 0:05 and ##p < 0:01) in the cor-
tex and hippocampus relative to the LPS-treated group. Fur-
thermore, cotreatment of LPS with ATRA further
exaggerated the level of neuroinflammatory mediators, while
carveol administration to the LPS- and ATRA-treated group
did not show any protective effect against the detrimental
effects of LPS and ATRA treatment.

3.6. Effects of Carveol Pretreatment on LPS-Induced Lipid
Peroxidation and Antioxidant Enzymes. To investigate the
neuroprotective and antioxidant activity of carveol, we mea-
sured the levels of various enzymes such as catalase, GST,
GSH, and thiobarbituric acid reactive substances (TBARS)
in both the cortex and hippocampus. Our results showed
that carveol administration significantly ameliorated the
LPS-induced oxidative stress via restoring the expression of
the antioxidant enzymes in both the cortex and hippocam-
pus. The levels of catalase, GST, and GSH were significantly
lowered in the LPS-treated group compared to that of the
saline group (Figures 7(a)–7(f), ∗∗∗ p < 0:001 and ∗∗p <
0:01). In accordance, a marked elevation in the level of
TBARS was observed in the LPS-treated brain compared to
that of the saline group (Figures 7(g) and 7(h), ∗∗p < 0:01
). Carveol administration induced the production of the
antioxidant enzymes, i.e., catalase, GST, and GSH, in both
the prefrontal cortex and hippocampus (Figures 7(a) and
7(b), ##p < 0:01; Figures 7(c) and 7(d), #p < 0:05 and
Figures 7(e) and 7(f), #p < 0:05). On the other hand, a
noticeably decreased level of TBARS was observed in the
carveol-treated group as compared to that of the LPS-
treated group (Figures 7(g) and 7(h), #p < 0:05). Further-
more, carveol administration in the ATRA-treated groups
did not show any antioxidant activity (Figure 7), validating
the results of endogenous antioxidant enzyme Nrf2
(Figure 5). Finally, our results revealed that carveol might
possess potential free radical scavenging activity to attenuate
the LPS-induced oxidative stress in the cortex and hippo-
campus of a rat’s brain.
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4. Discussion

Research studies in the recent decade have highlighted the
role of phytochemicals in maintaining the brain’s chemical
balance and providing a potential source of neuroprotec-
tants in several neurodegenerative diseases [58]. The goal
of the present research study was to reveal the neurothera-
peutic potential of the natural product, carveol against
LPS-induced depression and anxiety in the rodent model.
Carveol was used in this study based on its reported anti-

inflammatory, antioxidant, anti-Alzheimer, and other neu-
roprotective properties [46, 59].

Accumulating evidence has shown that peripheral
immune activation and increased cytokine production con-
tribute to the development of depression [60]. LPS administra-
tion in rodents induces depressive and anxiety-like behaviors
in several ways that include reduced locomotor activity and a
decrease in struggling time in an unfavorable environment
such as FST [61]. Here, in this study, we have shown that
carveol pretreatment significantly attenuated the LPS-
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Figure 7: Continued.
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induced behavioral despair by increasing mobility and strug-
gling time. Previous research studies have reported that
decreased locomotor activity in the FST may be caused by
the increased level of proinflammatory cytokines and reactive
oxygen species (ROS) in the LPS model [61]. In accordance
with previous studies, our results showed that carveol
(20mg/kg) mitigated depression-like symptoms induced by
LPS. In addition to FST, we determined the grooming behav-

ior of experimental rats in the SST, which may indicate
decreased motivation and apathy. Our results pointed out that
LPS administration significantly decreases the grooming time,
hence inducing apathy and lack of motivation. Administration
of carveol improved the core symptoms of depressive-like
behaviors by mitigating LPS-induced behavioral despair and
apathy. Furthermore, we also investigated anxiety-like behav-
iors by EPM and LDB tests. The data obtained from these
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Figure 7: Effects of carveol pretreatment on antioxidant enzymes and LPS-induced lipid peroxidation. Effects of LPS and CAR on levels of
GSH (a, b), GST (c, d), catalase (e, f), and TBARS (g, h). Data are expressed as means ± SEM. ∗∗p < 0:01 and ∗∗∗p < 0:001 are compared to
the saline group; ##p < 0:001 and #p < 0:05 indicate a significant difference compared to the LPS group, and †p < 0:05 or ††p < 0:01 is
compared to ATRA+LPS. The saline, LPS, CAR+LPS, and FLX+LPS groups were those studied in the first cohort (n = 5/group), while
the ATRA+LPS, CAR+ATRA+LPS, and ATRA+LPS+ FLX groups were from the second cohort (n = 5/group). CAR 20: carveol (20mg/
kg); LPS: lipopolysaccharide; ATRA: all-trans retinoic acid; FLX: fluoxetine; CAT: catalase; GSH: reduced glutathione; GST: glutathione
S-transferase; TBARS: thiobarbituric acid reactive substances.
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paradigms determined the anxiolytic potential of carveol, as
elevated values were observed in the open arm and lightbox
parameters that indicate potential anxiolytic activity [62].

Several research bodies have demonstrated the involvement
of oxidative stress and ROS in the pathophysiology of various
neurological disorders [63, 64] including depression [65]. Our
results attest to the previously reported data, that LPS adminis-
tration induces an imbalance between endogenous antioxidant
substances and stress agents, thereby stimulating the produc-
tion of ROS and activation of the neuroinflammatory cascade.
Furthermore, currently, several clinically used antidepressant
drugs have potential ROS ameliorating effects in depressed
patients. Among the various neuroinflammatory mechanisms,
the Nrf2 gene has been demonstrated as one of the major regu-
lators of the cellular antioxidant system which involves tran-
scription factor Nrf2 and its downstream signalling protein
HO-1 which modulates several anti-inflammatory and antioxi-
dants genes [66]. Modulation of the Nrf2 pathway has been
reported to play a major role in developing new strategies for
neuronal protection [67]. Furthermore, the antidepressive activ-
ity of many protective agents has shown the upregulation of
Nrf2 protein and its downstream signalling HO-1 in depression
models [68]. Interestingly, our results are in line with previous
studies indicating that the carveol-treated group reversed the
LPS-induced increased levels of ROS and LPO and induces
Nrf2/HO-1. These results validated our hypothesis that carveol
may contain antioxidant potential and free-radical scavenging
activity. To determine the possible mechanism for carveol-
mediated neuroprotection, carveol along with ATRA (Nrf2
inhibitor) was administered to the LPS-intoxicated rats. Our
results showed that inhibition of Nrf2 and HO-1 signalling
pathways by ATRA treatment reversed the potential neuropro-
tective effects of carveol. Similarly, the biochemical assays also
showed a significant decrease in levels of antioxidant enzymes
(GSH, GST, and catalase) along with an increase in LPO and
ROS levels in the ATRA-treated groups. This implies that
Nrf2/HO-1 signalling pathway is a potential target in the anti-
depressant and anxiolytic activity of carveol. In accordance,
our previous studies demonstrated that Nrf2 inhibition by
ATRA increased infarction area in the MCAO model of ische-
mic stroke in rats [33]. Martín-de-Saavedra et al. stated that
Nrf2 affects the monoamine mechanism of depression by
modulating the level of different neurotransmitters such as
dopamine, noradrenaline, and serotonin [36]. Furthermore,
Nrf2 knockout mice showed an increased level of glutamate
accompanied by a significant decrease in the level of these
neurotransmitters [36]. In addition, behavioral analysis in other
research studies has shown an increase in immobility time in
FST and a decrease in grooming time in SST in Nrf2 null mice
which further supports the role of Nrf-2 antagonism in depres-
sion [69]. It is well known that Nrf2 activation leads to the inhi-
bition of inflammatory mediators via downregulating the NF-
κB signaling pathway. HO-1, downstream ofNrf2 is also known
to be a potent inhibitor of proinflammatory cytokines [70, 71].
Consistent with previous research studies, our findings demon-
strated that carveol effectively reversed the LPS-induced protein
expression of various inflammatory mediators such as p-NFkB,
TNF-α, and COX-2. Similarly, carveol upregulated the LPS-
induced decreased protein expression of the antioxidant

enzymes HO-1. Mechanistically, both the anti-inflammatory
and antioxidant activities of carveol were diminished in the
ATRA-treated groups, which supports our hypothesis that car-
veol exerts its protective activity via activating the Nrf2/HO-1
signaling pathway [71, 72].

Several lines of evidence have reported the involvement
of MAP kinases such as JNK signaling in the induction of
neuroinflammation-induced neurodegenerative disorders.
Activation of the JNK also interferes with the BCL-2 family
of proteins to induce cell death via activation of the mito-
chondrial apoptotic pathway [73]. In accordance, other
studies have demonstrated a close interplay of JNK and
caspase-3 in the apoptotic cascade [74, 75]. Our results dem-
onstrated that carveol alleviated LPS-induced elevated levels
of proapoptotic proteins and p-JNK.

5. Conclusion

Taken together, we can conclude from our results that carveol
possesses potential antioxidant, anti-inflammatory, and neuro-
protective properties. Further, our proposed neuroprotective
mechanism suggests that carveol activated the endogenous
antioxidant proteins like Nrf2 and HO-1 coupled to the down-
regulation of anti-inflammatory proteins like p-NFκB and p-
JNK. Collectively, these protective properties of carveol may
offer a new therapeutic option for protecting the brain from
neuroinflammation and oxidative stress.
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