9 research outputs found
A FUZZY BASED PARAMETRIC MONITORING AND CONTROL ALGORITHM FOR DISTINCTIVE LOADS TO ENHANCE THE STABILITY IN RURAL ISLANDED MICROGRIDS
Effective monitoring and control of isolated rural microgrid in the developing world is challenging. The modern communication and monitoring is difficult to handle in such communities due to a complicated approach to the area, lack of modern facilities and unavailability of skilled manpower. Implementation of a microgrid in such areas using intermittent renewable sources and limited storage is challenging. Uncontrolled load consumption leads to the system-wide outages due to prolonged storage utilization in peak hours and is referred here as battery storage stress hours (BSSH). This research is focused to study and analyze the behavior of parametric load monitoring and control algorithm that could control the distinctive load of the microgrid during BSSH. In the proposed algorithm, the residential loads are distinctively controlled while utilizing the three locally available parameters that are the state of the charge of storage, solar irradiations and ambient temperature. In other words, the natural parameter variations have been uniquely utilized as a monitoring tool for load control. The fuzzy controller takes a decision for the activation or deactivation of any load based on the three parameters variation ranges. It is observed from the simulation and experimental results that while only utilizing locally available parameters the effective load control is possible
A novel automated demand response control using fuzzy logic for islanded battery‐operated rural microgrids
Islanded rural microgrid require continuous resource monitoring. Demand response schemes have been phenomenal in managing loads. However, urban demand response schemes are well equipped with market prices and peak time penalties to control deferrable loads. In rural microrids, regular loads such as fans, lights and water pumps are normally used that do not fall under category of deferrable loads. In addition, full liberty of utilizing regular load at any time, lack of awareness and no information of storage reserves make task of load management more complex. In this research fully automated two layered demand response scheme is designed for regular operating loads. The first layer control is load mode control. The mode of operation is decided on the state of charge (SoC) of battery. In second layer, fuzzy controller is designed on the consumer's routines, SoC and ambient temperature as membership function. Results are assessed in terms of consumers comfort and availablity of SoC. The load operation in automated demand response remained indentical to actual rutine operation as per consumer's desire with 5 to 7% deviation. In all modes of operation SoC levels remained 15% higher and heavy load operated 13.5% more compare to relevant study
An Energy Policy Analysis and Proposed Remedial Actions to Reduce Energy Crises in Pakistan
Pakistan energy demand has grown exponentially over the last 2 decades. Reason behind increasing
energy demand is excessive mobility of rural population to cities, rapid progression in industrial and
transport sector, lack of policy making and implementation on the developed policies and improvements
in living style. At present, Pakistan witness 5000-7000 MW power deficit in summer. To reduce the
demand and supply gap, power plants across Pakistan are planned to be installed while some are under
development phase. Power expansion plans cannot cope with the current energy shortfall since several
years are required for them to get fully operational. Effective energy policy is the only key to address the
existing shortfall. This paper discusses the initiatives that may be taken to reduce the power shortfall
using energy efficiency and conservation, deployment of microgrids, utilization of renewable energy
resources and effective research and development in energy sector. Since another most important issue
evaluated in the research regarding the energy crises is energy efficiency and lack of compliance to
government regulations for energy efficiency and conservation. Implementation on the policies developed
for energy efficiencies and conservation has not been witnessed. Possible solutions on short term basis
to lessen the energy crises have also been discussed in the pape
Robust residual generator design for sensor fault detection in twin rotor aerodynamic system
The twin rotor aerodynamic system (TRAS) reflects the dynamics of vertical take-off rotor systems. TRAS considers the coupling effect and gyroscopic disturbance torque as unwanted signals. For safe and reliable TRAS operation, proper control input is vital, along with fast fault indication. This paper addresses the output sensor fault detection problem in the linear model of TRAS subjected to l2-norm bounded disturbance. A robust design of an observer is formulated as H-/H∞ optimization problem to maximize the sensitivity/robustness criterion. The approach minimizes the disturbance effect on the residual signal, which leads to successful fault detection. Furthermore, a linear quadratic regulator-based state feedback controller is proposed to meet the system's desired transient response requirement. The incorporation of an observer-based residual generator for fault detection along with the state-feedback controller differs the current work from the existing work. Successful fault detection in the output sensor of TRAS depicts the good performance of the proposed observer
Feasibility Assessment of Rural Hybrid Microgrid Using Canal-Based Microhydel Resources: A Case Study of Renala Khurd Pakistan
Water canal networks that are widely used for irrigation are an equally good source of micropower generation to be fed to the nearby areas. A practical example of such a system is the micro-hydro generation at Renala Khurd Pakistan integrated with the national grid known as hydro–grid configuration. Apart from the rare Renala Khurd hydro generation example, solar photovoltaic generation integrated with a mainstream network, i.e., solar PV-Grid configuration, is widely used. The integrated operation of combinations of primary distributed generation sources has different operational attributes in terms of economics and reliability that are needed to be quantified before installation. So far, various combinations of primary distributed generation sources have been simulated and their accumulative impact on project economics and reliability have been reported. A detailed economic and reliability assessment of various configurations is needed for sustainable and cost-effective configuration selection. This study proposes a trigeneration combination of solar–hydro–grid with an optimal sizing scheme to reduce the solar system sizing and grid operational cost. A genetic algorithm based optimal sizing formulation is developed using fixed hydro and variable solar and grid systems with a number of pre-defined constraints. The hydro–grid, solar–grid, and grid–hydro–solar configurations are simulated in HOMER Pro software to analyze the economic impact, and to undertake reliability assessments under various configurations of the project. Finally, optimal values of the genetic algorithm are provided to the HOMER Pro software search space for simulating the grid–hydro–solar configuration. It was revealed that the net present cost (NPC) of hydro-to-grid configuration was 23% lower than the grid–hydro–solar configuration, whereas the NPC of grid–hydro–solar without optimal sizing was 40% lower than the solar–grid configuration, and the NPC of grid–solar–hydro with the genetic algorithm was 36% lower than the hydro–grid configuration, 50.90% lower than solar–grid–hydro without the genetic algorithm, and 17.1% lower than the grid–solar configuration, thus proving utilization of trigeneration sources integration to be a feasible solution for areas where canal hydropower is available
Feasibility Assessment of Rural Hybrid Microgrid Using Canal-Based Microhydel Resources: A Case Study of Renala Khurd Pakistan
Water canal networks that are widely used for irrigation are an equally good source of micropower generation to be fed to the nearby areas. A practical example of such a system is the micro-hydro generation at Renala Khurd Pakistan integrated with the national grid known as hydro–grid configuration. Apart from the rare Renala Khurd hydro generation example, solar photovoltaic generation integrated with a mainstream network, i.e., solar PV-Grid configuration, is widely used. The integrated operation of combinations of primary distributed generation sources has different operational attributes in terms of economics and reliability that are needed to be quantified before installation. So far, various combinations of primary distributed generation sources have been simulated and their accumulative impact on project economics and reliability have been reported. A detailed economic and reliability assessment of various configurations is needed for sustainable and cost-effective configuration selection. This study proposes a trigeneration combination of solar–hydro–grid with an optimal sizing scheme to reduce the solar system sizing and grid operational cost. A genetic algorithm based optimal sizing formulation is developed using fixed hydro and variable solar and grid systems with a number of pre-defined constraints. The hydro–grid, solar–grid, and grid–hydro–solar configurations are simulated in HOMER Pro software to analyze the economic impact, and to undertake reliability assessments under various configurations of the project. Finally, optimal values of the genetic algorithm are provided to the HOMER Pro software search space for simulating the grid–hydro–solar configuration. It was revealed that the net present cost (NPC) of hydro-to-grid configuration was 23% lower than the grid–hydro–solar configuration, whereas the NPC of grid–hydro–solar without optimal sizing was 40% lower than the solar–grid configuration, and the NPC of grid–solar–hydro with the genetic algorithm was 36% lower than the hydro–grid configuration, 50.90% lower than solar–grid–hydro without the genetic algorithm, and 17.1% lower than the grid–solar configuration, thus proving utilization of trigeneration sources integration to be a feasible solution for areas where canal hydropower is available
Chemical Composition, Repellent, and Oviposition Deterrent Potential of Wild Plant Essential Oils against Three Mosquito Species
In this study, the chemical composition, repellent, and oviposition deterrent effects of five plant essential oils (EOs) extracted from Lantana camara (Verbenaceae), Schinus terebinthifolia (Anacardiaceae), Callistemon viminalis (Myrtaceae), Helichrysum odoratissimum (Asteraceae), and Hyptis suaveolens (Lamiaceae) were evaluated against Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus. When tested at 33.3 µg/cm2, L. camara, S. terebinthifolia, C. viminalis, and H. odoratissimum were effective repellents against Ae. aegypti (89%, 91%, 90%, and 51% repellency, respectively), but they were less repellent against An. gambiae (66%, 86%, 59%, and 49% repellency, respectively). Interestingly, L. camara, S. terebinthifolia, C. viminalis, and H. odoratissimum exhibited 100% repellency against Cx. quinquefasciatus at 33.3 μg/cm2. In time-span bioassays performed at 333 μg/cm2, the EO of L. camara exhibited 100% repellence against Ae. aegypti and An. gambiae for up to 15 min and against Cx. quinquefasciatus for 75 min. The oviposition bioassays revealed that L. camara exhibited the highest activity, showing 85%, 59%, and 89% oviposition deterrence against Ae. aegypti, An. gambiae, and Cx. quinquefasciatus, respectively. The major compounds of L. camara, S. terebinthifolia, and C. viminalis were trans-β-caryophyllene (16.7%), α-pinene (15.5%), and 1,8-cineole (38.1%), respectively. In conclusion, the L. camara and S. terebinthifolia EOs have the potential to be natural mosquito repellents