1,873 research outputs found
Cavity-enhanced optical detection of carbon nanotube Brownian motion
Optical cavities with small mode volume are well-suited to detect the
vibration of sub-wavelength sized objects. Here we employ a fiber-based,
high-finesse optical microcavity to detect the Brownian motion of a freely
suspended carbon nanotube at room temperature under vacuum. The optical
detection resolves deflections of the oscillating tube down to 50pm/Hz^1/2. A
full vibrational spectrum of the carbon nanotube is obtained and confirmed by
characterization of the same device in a scanning electron microscope. Our work
successfully extends the principles of high-sensitivity optomechanical
detection to molecular scale nanomechanical systems.Comment: 14 pages, 11 figure
Microscopic nanomechanical dissipation in gallium arsenide resonators
We report on a systematic study of nanomechanical dissipation in
high-frequency (approximatively 300 MHz) gallium arsenide optomechanical disk
resonators, in conditions where clamping and fluidic losses are negligible.
Phonon-phonon interactions are shown to contribute with a loss background
fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina
at the surface modifies the quality factor of resonators, pointing towards the
importance of surface dissipation. The temperature evolution is accurately
fitted by two-level systems models, showing that nanomechanical dissipation in
gallium arsenide resonators directly connects to their microscopic properties.
Two-level systems, notably at surfaces, appear to rule the damping and
fluctuations of such high-quality crystalline nanomechanical devices, at all
temperatures from 3 to 300K
Decoration of nanovesicles with pH (low) insertion peptide (pHLIP) for targeted delivery
Acidity at surface of cancer cells is a hallmark of tumor microenvironments, which does not depend on tumor perfusion, thus it may serve as a general biomarker for targeting tumor cells. We used the pH (low) insertion peptide (pHLIP) for decoration of liposomes and niosomes. pHLIP senses pH at the surface of cancer cells and inserts into the membrane of targeted cells, and brings nanomaterial to close proximity of cellular membrane. DMPC liposomes and Tween 20 or Span 20 niosomes with and without pHLIP in their coating were fully characterized in order to obtain fundamental understanding on nanocarrier features and facilitate the rational design of acidity sensitive nanovectors. The samples stability over time and in presence of serum was demonstrated. The size, ζ-potential, and morphology of nanovectors, as well as their ability to entrap a hydrophilic probe and modulate its release were investigated. pHLIP decorated vesicles could be useful to obtain a prolonged (modified) release of biological active substances for targeting tumors and other acidic diseased tissues
Cavity cooling of a nanomechanical resonator by light scattering
We present a novel method for opto-mechanical cooling of sub-wavelength sized
nanomechanical resonators. Our scheme uses a high finesse Fabry-Perot cavity of
small mode volume, within which the nanoresonator is acting as a
position-dependant perturbation by scattering. In return, the back-action
induced by the cavity affects the nanoresonator dynamics and can cool its
fluctuations. We investigate such cavity cooling by scattering for a nanorod
structure and predict that ground-state cooling is within reach.Comment: 4 pages, 3 figure
Effects of Cognitive Remediation on Cognition, Metacognition, and Social Cognition in Patients With Schizophrenia
We aimed to evaluate in a sample of outpatients with schizophrenia (SCZ) the effectiveness of a cognitive remediation (CR) program (through the use of the Cogpack software) [computer-assisted CR (CACR)] in addition to standard therapy on cognitive outcomes as compared with that in a control active group (CAG) and to highlight a possible effect on social cognition (SC), metacognition, symptomatology, and real-world functioning. Of the 66 subjects enrolled, 33 were allocated to CACR and 33 to the CAG. Twenty-three patients in the CACR group and 25 subjects in the CAG completed at least 80% of the 48 prescribed CACR sessions, performed twice a week, for a total of 24 weeks of treatment. A significant time × group interaction was evident, suggesting that patients undergoing CACR intervention improved in specific metacognitive sub-functions (understanding others' mind and mastery), some cognitive domains (verbal learning processing speed, visual learning, reasoning, and problem solving) (h(2) = 0.126), depressive symptoms, SC, awareness of symptoms, and real-world functioning domains (community activities and interpersonal relationships) more significantly than did patients undergoing CAG. The most noticeable differential improvement between the two groups was detected in two metacognitive sub-functions (understanding others' mind and mastery), in verbal learning, in interpersonal relationship, and in depressive symptomatology, achieving large effect sizes. These are encouraging findings in support of the possible integration of CACR in rehabilitation practice in the Italian mental health services
Changes in lichen diversity and community structure with fur seal population increase on Signy Island, South Orkney Islands
Signy Island has experienced a dramatic increase in fur seal numbers over recent decades, which has led to the devastation of lowland terrestrial vegetation, with the eradication of moss turfs and carpets being the most prominent feature. Here we demonstrate that fur seals also affect the other major component of this region’s typical cryptogamic vegetation, the lichens, although with a lower decrease in variability and abundance than for bryophytes. Classification (UPGMA) and ordination (Principal Coordinate Analysis) of vegetation data highlight differences in composition and abundance of lichen communities between areas invaded by fur seals and contiguous areas protected from these animals. Multivariate analysis relating lichen communities to environmental parameters, including animal abundance and soil chemistry (Canonical Correspondence Analysis), suggests that fur seal trampling results in the destruction of muscicolous-terricolous lichens, including several cosmopolitan and bipolar fruticose species. In addition, animal excretion favours an increase in nitrophilous crustose species, a group which typically characterizes areas influenced by seabirds and includes several Antarctic endemics. The potential effect of such animal-driven changes in vegetation on the fragile terrestrial ecosystem (e.g. through modification of the ground surface temperature) confirms the importance of indirect environmental processes in Antarctica
- …