92 research outputs found

    New approaches to the treatment of biofilm-related infections

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Bacteria causing chronic infections predominately grow as surface-attached, sessile communities known as biofilms. Biofilm-related infections including cystic fibrosis lung infection, chronic and recurrent otitis media, chronic wounds and implant- and catheter-associated infections, are a significant cause of morbidity and mortality at great financial cost. Chronic biofilm-based infections are recalcitrant to conventional antibiotic therapy and are often unperturbed by host immune responses such as phagocytosis, despite a sustained presence of host inflammation. The diagnosis of clinically important biofilm infections is often difficult as Koch’s postulates are rarely met. If treatment is required, surgical removal of the infected implant, or debridement of wound or bone, is the most efficient means of eradicating a clinically significant biofilm. New approaches to treatment are under investigation

    Invasive Propionibacterium acnes infections in a non-selective patient cohort: clinical manifestations, management and outcome

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Purpose An increasing number of reports suggest that Propionibacterium acnes can cause serious invasive infections. Currently only limited data exist regarding the spectrum of invasive P. acnes infections. Methods Non-selective cohort study at a tertiary hospital in the UK over a nine-year-period (2003-2012) investigating clinical manifestations, risk factors, management and outcome of invasive P. acnes infections. Results Forty-nine cases were identified; the majority were neurosurgical infections and orthopaedic infections (n=28 and n=15, respectively). Only two cases had no predisposing factors; all neurosurgical and 93.3% of orthopaedic cases had a history of previous surgery and/or trauma. Foreign material was in situ at the infection site in 59.3% and 80.0% of neurosurgical and orthopaedic cases, respectively. All neurosurgical and orthopaedic cases required one or more surgical interventions to treat P. acnes infection, with or without concomitant antibiotic therapy; the duration of antibiotic therapy was significantly longer in the group of orthopaedic cases (median 53 versus 19 days; p=0.0025). All tested P. acnes isolates were susceptible to penicillin, ampicillin and chloramphenicol; only one was clindamycin-resistant. Conclusions Neurosurgical and orthopaedic infections account for the majority of invasive P. acnes infections. The majority of cases have predisposing factors, including previous surgery and/or trauma; spontaneous infections are rare. Foreign material is commonly present at the site of infection, indicating that the pathogenesis of invasive P. acnes infections likely involves biofilm formation. Since invasive P. acnes infections are associated with considerable morbidity, further studies are needed to establish effective prevention and optimal treatment strategies

    Safety and efficacy of novel malaria vaccine regimens of RTS,S/AS01B alone, or with concomitant ChAd63-MVA-vectored vaccines expressing ME-TRAP

    Get PDF
    We assessed a combination multi-stage malaria vaccine schedule in which RTS,S/AS01B was given concomitantly with viral vectors expressing multiple-epitope thrombospondin-related adhesion protein (ME-TRAP) in a 0-month, 1-month, and 2-month schedule. RTS,S/AS01B was given as either three full doses or with a fractional (1/5th) third dose. Efficacy was assessed by controlled human malaria infection (CHMI). Safety and immunogenicity of the vaccine regimen was also assessed. Forty-one malaria-naive adults received RTS,S/AS01B at 0, 4 and 8 weeks, either alone (Groups 1 and 2) or with ChAd63 ME-TRAP at week 0, and modified vaccinia Ankara (MVA) ME-TRAP at weeks 4 and 8 (Groups 3 and 4). Groups 2 and 4 received a fractional (1/5th) dose of RTS,S/AS01B at week 8. CHMI was delivered by mosquito bite 11 weeks after first vaccination. Vaccine efficacy was 6/8 (75%), 8/9 (88.9%), 6/10 (60%), and 5/9 (55.6%) of subjects in Groups 1, 2, 3, and 4, respectively. Immunological analysis indicated significant reductions in anti-circumsporozoite protein antibodies and TRAP-specific T cells at CHMI in the combination vaccine groups. This reduced immunogenicity was only observed after concomitant administration of the third dose of RTS,S/AS01B with the second dose of MVA ME-TRAP. The second dose of the MVA vector with a four-week interval caused significantly higher anti-vector immunity than the first and may have been the cause of immunological interference. Co-administration of ChAd63/MVA ME-TRAP with RTS,S/AS01B led to reduced immunogenicity and efficacy, indicating the need for evaluation of alternative schedules or immunization sites in attempts to generate optimal efficacy

    Human leukocyte antigen alleles associate with COVID-19 vaccine immunogenicity and risk of breakthrough infection

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine immunogenicity varies between individuals, and immune responses correlate with vaccine efficacy. Using data from 1,076 participants enrolled in ChAdOx1 nCov-19 vaccine efficacy trials in the United Kingdom, we found that inter-individual variation in normalized antibody responses against SARS-CoV-2 spike and its receptor-binding domain (RBD) at 28 days after first vaccination shows genome-wide significant association with major histocompatibility complex (MHC) class II alleles. The most statistically significant association with higher levels of anti-RBD antibody was HLA-DQB1*06 (P = 3.2 × 10−9), which we replicated in 1,677 additional vaccinees. Individuals carrying HLA-DQB1*06 alleles were less likely to experience PCR-confirmed breakthrough infection during the ancestral SARS-CoV-2 virus and subsequent Alpha variant waves compared to non-carriers (hazard ratio = 0.63, 0.42–0.93, P = 0.02). We identified a distinct spike-derived peptide that is predicted to bind differentially to HLA-DQB1*06 compared to other similar alleles, and we found evidence of increased spike-specific memory B cell responses in HLA-DQB1*06 carriers at 84 days after first vaccination. Our results demonstrate association of HLA type with Coronavirus Disease 2019 (COVID-19) vaccine antibody response and risk of breakthrough infection, with implications for future vaccine design and implementation

    Effect of priming interval on reactogenicity, peak immunological response, and waning after homologous and heterologous COVID-19 vaccine schedules: exploratory analyses of Com-COV, a randomised control trial

    Get PDF
    Background: Priming COVID-19 vaccine schedules have been deployed at variable intervals globally, which might influence immune persistence and the relative importance of third-dose booster programmes. Here, we report exploratory analyses from the Com-COV trial, assessing the effect of 4-week versus 12-week priming intervals on reactogenicity and the persistence of immune response up to 6 months after homologous and heterologous priming schedules using the vaccines BNT162b2 (tozinameran, Pfizer/BioNTech) and ChAdOx1 nCoV-19 (AstraZeneca). Methods: Com-COV was a participant-masked, randomised immunogenicity trial. For these exploratory analyses, we used the trial's general cohort, in which adults aged 50 years or older were randomly assigned to four homologous and four heterologous vaccine schedules using BNT162b2 and ChAdOx1 nCoV-19 with 4-week or 12-week priming intervals (eight groups in total). Immunogenicity analyses were done on the intention-to-treat (ITT) population, comprising participants with no evidence of SARS-CoV-2 infection at baseline or for the trial duration, to assess the effect of priming interval on humoral and cellular immune response 28 days and 6 months post-second dose, in addition to the effects on reactogenicity and safety. The Com-COV trial is registered with the ISRCTN registry, 69254139 (EudraCT 2020–005085–33). Findings: Between Feb 11 and 26, 2021, 730 participants were randomly assigned in the general cohort, with 77–89 per group in the ITT analysis. At 28 days and 6 months post-second dose, the geometric mean concentration of anti-SARS-CoV-2 spike IgG was significantly higher in the 12-week interval groups than in the 4-week groups for homologous schedules. In heterologous schedule groups, we observed a significant difference between intervals only for the BNT162b2–ChAdOx1 nCoV-19 group at 28 days. Pseudotyped virus neutralisation titres were significantly higher in all 12-week interval groups versus 4-week groups, 28 days post-second dose, with geometric mean ratios of 1·4 (95% CI 1·1–1·8) for homologous BNT162b2, 1·5 (1·2–1·9) for ChAdOx1 nCoV-19–BNT162b2, 1·6 (1·3–2·1) for BNT162b2–ChAdOx1 nCoV-19, and 2·4 (1·7–3·2) for homologous ChAdOx1 nCoV-19. At 6 months post-second dose, anti-spike IgG geometric mean concentrations fell to 0·17–0·24 of the 28-day post-second dose value across all eight study groups, with only homologous BNT162b2 showing a slightly slower decay for the 12-week versus 4-week interval in the adjusted analysis. The rank order of schedules by humoral response was unaffected by interval, with homologous BNT162b2 remaining the most immunogenic by antibody response. T-cell responses were reduced in all 12-week priming intervals compared with their 4-week counterparts. 12-week schedules for homologous BNT162b2 and ChAdOx1 nCoV-19–BNT162b2 were up to 80% less reactogenic than 4-week schedules. Interpretation: These data support flexibility in priming interval in all studied COVID-19 vaccine schedules. Longer priming intervals might result in lower reactogenicity in schedules with BNT162b2 as a second dose and higher humoral immunogenicity in homologous schedules, but overall lower T-cell responses across all schedules. Future vaccines using these novel platforms might benefit from schedules with long intervals. Funding: UK Vaccine Taskforce and National Institute for Health and Care Research

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Continued control of pneumococcal disease in the UK - the impact of vaccination

    No full text
    Streptococcus pneumoniae, also known as the pneumococcus, is an important cause of morbidity and mortality in the developed and developing world. Pneumococcal conjugate vaccines were first introduced for routine use in the USA in 2000, although the seven-valent pneumococcal conjugate vaccine (PCV7) was not introduced into the UK's routine childhood immunization programme until September 2006. After its introduction, a marked decrease in the incidence of pneumococcal disease was observed, both in the vaccinated and unvaccinated UK populations. However, pneumococci are highly diverse and serotype prevalence is dynamic. Conversely, PCV7 targets only a limited number of capsular types, which appears to confer a limited lifespan to the observed beneficial effects. Shifts in serotype distribution have been detected for both non-invasive and invasive disease reported since PCV7 introduction, both in the UK and elsewhere. The pneumococcal Haemophilus influenzae protein D conjugate vaccine (PHiD-CV, Synflorix; GlaxoSmithKline) and 13-valent pneumococcal conjugate vaccine (PCV13, Prevenar 13; Pfizer) have been newly licensed. The potential coverage of the 10- and 13-valent conjugate vaccines has also altered alongside serotype shifts. Nonetheless, the mechanism of how PCV7 has influenced serotype shift is not clear-cut as the epidemiology of serotype prevalence is complex. Other factors also influence prevalence and incidence of pneumococcal carriage and disease, such as pneumococcal diversity, levels of antibiotic use and the presence of risk groups. Continued surveillance and identification of factors influencing serotype distribution are essential to allow rational vaccine design, implementation and continued effective control of pneumococcal disease

    Infection

    No full text

    A national trainee advisory network: a proposal

    No full text
    Trainees should have a well-defined and consistent communication conduit to the authorities involved with their training. It is important that trainees are involved in the evolution of structured training programmes and for training authorities to receive feedback from individuals in each specialty. This paper proposes a structure for trainee representation on regional and national training authorities to facilitate an advisory network
    corecore