322 research outputs found

    Continuum Reverberation Mapping of the Accretion Disks in Two Seyfert 1 Galaxies

    Get PDF
    We present optical continuum lags for two Seyfert 1 galaxies, MCG+08-11-011 and NGC 2617, using monitoring data from a reverberation mapping campaign carried out in 2014. Our light curves span the ugriz filters over four months, with median cadences of 1.0 and 0.6 days for MCG+08-11-011 and NGC 2617, respectively, combined with roughly daily X-ray and near-UV data from Swift for NGC 2617. We find lags consistent with geometrically thin accretion-disk models that predict a lag-wavelength relation of τ ∝ λ^(4/3). However, the observed lags are larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for NGC 2617. These differences can be explained if the mass accretion rates are larger than inferred from the optical luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC 2617, although uncertainty in the SMBH masses determines the significance of this result. While the X-ray variability in NGC 2617 precedes the UV/optical variability, the long (2.6 day) lag is problematic for coronal reprocessing models

    Reverberation Mapping of Optical Emission Lines in Five Active Galaxies

    Get PDF
    We present the first results from an optical reverberation mapping campaign executed in 2014 targeting the active galactic nuclei (AGNs) MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. Our targets have diverse and interesting observational properties, including a "changing look" AGN and a broad-line radio galaxy. Based on continuum-Hβ lags, we measure black hole masses for all five targets. We also obtain Hγ and He ii λ4686 lags for all objects except 3C 382. The He ii λ4686 lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines are also in qualitative agreement with photoionization models. These spectra have extremely high signal-to-noise ratios (100–300 per pixel) and there are excellent prospects for obtaining velocity-resolved reverberation signatures

    Swift/UVOT grism monitoring of NGC 5548 in 2013: an attempt at MgII reverberation mapping

    Full text link
    Reverberation-mapping-based scaling relations are often used to estimate the masses of black holes from single-epoch spectra of AGN. While the radius-luminosity relation that is the basis of these scaling relations is determined using reverberation mapping of the Hβ\beta line in nearby AGN, the scaling relations are often extended to use other broad emission lines, such as MgII, in order to get black hole masses at higher redshifts when Hβ\beta is redshifted out of the optical waveband. However, there is no radius-luminosity relation determined directly from MgII. Here, we present an attempt to perform reverberation mapping using MgII in the well-studied nearby Seyfert 1, NGC 5548. We used Swift to obtain UV grism spectra of NGC 5548 once every two days from April to September 2013. Concurrent photometric UV monitoring with Swift provides a well determined continuum lightcurve that shows strong variability. The MgII emission line, however, is not strongly correlated with the continuum variability, and there is no significant lag between the two. We discuss these results in the context of using MgII scaling relations to estimate high-redshift black hole masses.Comment: 8 pages, 7 figures, accepted for publication in Ap

    The Cepheid distance to the maser-host galaxy NGC 4258: Studying systematics with the Large Binocular Telescope

    Get PDF
    We identify and phase a sample of 81 Cepheids in the maser-host galaxy NGC 4258 using the Large Binocular Telescope (LBT), and obtain calibrated mean magnitudes in up to 4 filters for a subset of 43 Cepheids using archival HST data. We employ 3 models to study the systematic effects of extinction, the assumed extinction law, and metallicity on the Cepheid distance to NGC 4258. We find a correction to the Cepheid colors consistent with a grayer extinction law in NGC 4258 compared to the Milky Way (RV=4.9R_V =4.9), although we believe this is indicative of other systematic effects. If we combine our Cepheid sample with previously known Cepheids, we find a significant metallicity adjustment to the distance modulus of γ1=0.61±0.21\gamma_1 = -0.61 \pm 0.21 mag/dex, for the Zaritsky et al. (1994) metallicity scale, as well as a weak trend of Cepheid colors with metallicity. Conclusions about the absolute effect of metallicity on Cepheid mean magnitudes appear to be limited by the available data on the metallicity gradient in NGC 4258, but our Cepheid data require at least some metallicity adjustment to make the Cepheid distance consistent with independent distances to the LMC and NGC 4258. From our ensemble of models and the geometric maser distance of NGC 4258 (μN4258=29.40±0.06\mu_{N4258} = 29.40 \pm 0.06 mag), we estimate μLMC=18.57±0.14\mu_{LMC} = 18.57 \pm 0.14 mag (51.82±3.2351.82 \pm 3.23 kpc).Comment: Accepted for publication in MNRAS. 28 pages, 13 figures, 11 tables. A brief video summarizing the key results of this paper can be found at http://youtu.be/ICTTNyxZ89

    Continuum Reverberation Mapping of the Accretion Disks in Two Seyfert 1 Galaxies

    Get PDF
    We present optical continuum lags for two Seyfert 1 galaxies, MCG+08-11-011 and NGC 2617, using monitoring data from a reverberation mapping campaign carried out in 2014. Our light curves span the ugriz filters over four months, with median cadences of 1.0 and 0.6 days for MCG+08-11-011 and NGC 2617, respectively, combined with roughly daily X-ray and near-UV data from Swift for NGC 2617. We find lags consistent with geometrically thin accretion-disk models that predict a lag-wavelength relation of τ ∝ λ^(4/3). However, the observed lags are larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for NGC 2617. These differences can be explained if the mass accretion rates are larger than inferred from the optical luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC 2617, although uncertainty in the SMBH masses determines the significance of this result. While the X-ray variability in NGC 2617 precedes the UV/optical variability, the long (2.6 day) lag is problematic for coronal reprocessing models

    TESS Data Release Notes: Sector 18 DR25

    Get PDF
    This release note discusses the science data products produced by the Science Processing Operations Center at Ames Research Center from Sector 18 observations made with the TESS spacecraft and cameras as a means to document instrument performance and data characteristics

    Multi-messenger astrophysics in the gravitational-wave era

    Full text link
    The observation of GW170817, the first binary neutron star merger observed in both gravitational waves (GW) and electromagnetic (EM) waves, kickstarted the age of multi-messenger GW astronomy. This new technique presents an observationally rich way to probe extreme astrophysical processes. With the onset of the LIGO-Virgo-KAGRA Collaboration's O4 observing run and wide-field EM instruments well-suited for transient searches, multi-messenger astrophysics has never been so promising. We review recent searches and results for multi-messenger counterparts to GW events, and describe existing and upcoming EM follow-up facilities, with a particular focus on WINTER, a new near-infrared survey telescope, and TESS, an exoplanet survey space telescope.Comment: 5 pages, 1 figure, proceedings from TAUP 202
    corecore