3 research outputs found

    Computer simulations of electrodiffusion problems based on Nernst-Planck and Poisson equations

    Get PDF
    A numerical procedure based on the method of lines for time-dependent electrodiffusion transport has been developed. Two types of boundary conditions (Neumann and Dirichlet) are considered. Finite difference space discretization with suitably selected weights based on a non-uniform grid is applied. Consistency of this method and the method put forward by Brumleve and Buck are analysed and compared. The resulting stiff system of ordinary differential equations is effectively solved using the RADAU5, RODAS and SEULEX integrators. The applications to selected electrochemical systems: liquid junction, bi-ionic case, ion selective electrodes and electrochemical impedance spectroscopy have been demonstrated. In the paper we promote the use of the full form of the Nernst-Planck and Poisson (NPP) equations, that is including explicitly the electric field as an unknown variable with no simplifications like electroneutrality or constant field assumptions. An effective method of the numerical solution of the NPP problem for arbitrary number of ionic species and valence numbers either for a steady state or a transient state is shown. The presented formulae - numerical solutions to the NPP problem - are ready to be implemented by anyone. Moreover, we make the resulting software freely available to anybody interested in using it. (C) 2012 Elsevier B.V. All rights reserved

    Breakthrough in Modeling of Electrodiffusion Processes; Continuation and Extensions of the Classical Work of Richard Buck

    Get PDF
    In 1978 Brumleve and Buck published an important paper [1] pertaining to numerical modeling of electrodiffusion. At the time their approach was not immediately recognized and followed. However, it has changed since the beginning of 21st century. The approach of Brumleve and Buck based on Nernst-Planck-Poisson (NPP) equations is utilized to model transient behavior of various electrochemical processes. Multi-layers and reactions allow extending applications to selectivity and low detection limit with time variability, influence of parameters (ion diffusivities, membrane thickness, permittivity, rate constants), and ion interference on ion-sensor responses. Solution of NPP inverse problem allows for optimizing sensor properties and measurement environment. Conditions under which experimentally measured selectivity coefficients are true (unbiased) and detection limit is optimized are demonstrated. Impedance spectra obtained directly from NPPs are presented. Modeling durability and diagnosis of reinforced concrete is presented. Chlorides transport in concrete is modeled using NPPs and compared to other solutions
    corecore