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In 1978 Brumleve and Buck published an important paper [1] 
pertaining to numerical modeling of electrodiffusion. At the time 
their approach was not immediately recognized and followed. 
However, it has changed since the beginning of 21st century. 
The approach of Brumleve and Buck based on Nernst-Planck-
Poisson (NPP) equations is utilized to model transient behavior of 
various electrochemical processes. Multi-layers and reactions 
allow extending applications to selectivity and low detection limit 
with time variability, influence of parameters (ion diffusivities, 
membrane thickness, permittivity, rate constants), and ion 
interference on ion-sensor responses. Solution of NPP inverse 
problem allows for optimizing sensor properties and measurement 
environment. Conditions under which experimentally measured 
selectivity coefficients are true (unbiased) and detection limit is 
optimized are demonstrated. Impedance spectra obtained directly 
from NPPs are presented. Modeling durability and diagnosis of 
reinforced concrete is presented. Chlorides transport in concrete is 
modeled using NPPs and compared to other solutions. 
 

Introduction 
 
The first really successful numerical modeling of electrodiffusion problems was 
presented in 1978 in the important paper by Timothy Brumleve and Richard Buck [1]. 
Novelty of their approach consisted of fully implicit method, non-uniform grids with two 
different types of finite differences (one for concentrations and second for fluxes) 
allowed to “create an efficient computer algorithm which permits treatment of multi-ion 
systems, thick or thin cells (membranes), and interfacial kinetics” [1]. 

In spite of the rapid increase of computational power at the time the paper was 
published their approach was not immediately recognized widely and followed by the 
electrochemical community. However, it has changed to some degree from the beginning 
of 21stcentury, e.g. [2, 3, 4, 5]. But still the majority of the present numerical modeling of 
electrodiffusion processes, for example, interpretations of ion-sensor response, 
determination of transient behavior of a system to electrical and chemical perturbations 
(electrochemical impedance spectra) focus on simplified models based on 
electroneutrality assumption, equivalent circuit models, equilibrium or steady-state, thus 
ignoring electrochemical migration and time-dependent effects, respectively. These 
theoretical approaches, due to their idealizations, make theorizing on ions distributions 
and electrical potential in space and time domains difficult or impossible. 
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For the above reasons, the approach of Brumleve and Buck based on Nernst-
Planck and Poisson (NPP) equations is utilized here to model the transient behavior of 
various electrochemical processes. Additionally, including several layers and reaction 
terms in mass balance equation allows for extending the applications to such areas as: 
selectivity and the low detection limit with variability over time, influence of parameters, 
such as ion diffusivity, membrane thickness, permittivity, rate constants and primary to 
interfering ion concentration ratios on ion-sensor responses. Moreover solution of the 
NPP inverse problem allows searching for optimal sensor properties and measurement 
conditions. The conditions under which experimentally measured selectivity coefficients 
are true (unbiased) and detection limits are optimized are demonstrated, and practical 
conclusions relevant to clinical measurements and bioassays are derived [6]. 

Another important field of application includes modeling of durability and 
diagnosis of cement paste or reinforced concrete [7], [8]. Based on the extended NPP 
model electrochemical impedance spectra (EIS) can be generated and analyzed to predict 
steel and concrete corrosion and finally utilize to prevent material failure. 

NPP model can be also a useful tool in the description of biological systems. The 
NPP model has the potential to reopen frontiers in the study of variety of the problems 
related to the electrochemistry of biological membranes [5], [9], [10]. 
 

The Nernst-Planck and Poisson model 
 

Basically, two equations (mass balance and Poisson equation from electrostatics), 
flux constitutive expression, and boundary conditions constitute what is known as the 
Nernst-Planck-Poisson model. In 1D linear geometry with r  species, the model is 
embodied in eqs. (1)-(5). 
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where: E − the electric field, and iJ − the flux, ic − the concentration, iµ − the 

chemical potential, iB − the mobility coefficient, iz − the charge number of the i-th 

species. For thermodynamically ideal solutions ( ln )i i iRT cµ µ ο= +  and with Einstein–

Smoluchowski relation ( )
A
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At each interface the boundary conditions must be specified. One possibility is the set of 
kinetic boundary conditions relating the fluxes to heterogeneous rate constants ( )ik  and 

concentrations near interfaces: 
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where ik
r

 are forward rate constants (“to the membrane”), ik
s

 are backward rate 

constants (“from the membrane”), subscripts L and R indicate left ( 0)x =  and right 
( )x d=  boundary, respectively. Requirements (5) are usually referred to as Chang-Jaffé 
boundary conditions [11] . 
 
Scaling and dimensionless variables 

Introducing dimensionless variables, the number of the physico-chemical 
parameters can be reduced. Moreover, by finding the proper scaling factors it is possible 
to obtain better accuracy in numerical computations. Thus, the equations (1)-(5) are 
converted into a dimensionless form through the following transformations: 

 : : : :/ , / , ( , ) ( , ) / , ( , ) ( , ) / ,s s i i s s s s s sx x x t t t c x t c x x t t c E x t E x x t t E= = = =  (6) 

where , , ,ix t c E  and , , ,ix t c E are physical and dimensionless values of distance, time, 

concentration and electric field, respectively; , , ,s s s sx t c E  are their characteristic values 

(scaling factors). Dimensionless parameters take the form: 
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After calculations we arrive at the following rescaled form of NPP system for [0, ]x d∈  
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To ease the burden of notation we drop hereafter the over-bars in all quantities. 
 

Numerical solution 
 
Space discretization 

The problem stated in above is straightforward to solve numerically using the 
method of lines. It consists of the space discretization using finite differences and solving 
the resulting system of ordinary differential equations (ODEs). To tackle the problem of 
large gradients a variable size grid is used, along with differences of second order 
accuracy which account for non-uniform grid. The numerical convergence is verified 
through multiple runs of different grid sizes. 
 
 
 
 
 
The schematic view of the space grid together with the location of concentrations, fluxes 
and electric field points are presented above. The general 
notation ( ) : ( , ),k

i i kc t c x t= 1/ 2
:( ) ( , ),k

kE t E x t−=  and 1/ 2
:( ) ( , )k

i kJ t J x t−=  is used in 

discretizations. 
 
Convergence 
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One of the factors that have impact on the quality of numerical procedure is the 
order of local truncation error (LTE). It is reasonable to assume that the higher the order 
of LTE the better convergence is to be expected. The local truncation error LTE is a grid 
function defined as follows: if 1( , , , )( , )rc c E x tK  is the true solution of NPP problem, 

then we can calculate the value of the finite difference expression after substituting into it 
this true solution. Now the LTE measures how well the true solution satisfies the 
difference scheme. In other words the LTE measures the error introduced by the 
evaluating the finite difference expression instead of evaluating the right-hand side of the 
equations. Derivation of the LTE both for Brumleve-Buck [1] and our approach was 
carried out revealing the following estimates [12]. 
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where max{ }.khδ =  Thus, for our method 
0

lim 0LTE
δ→

=  which means consistency. In the 

case of Brumleve-Buck 
0

lim 0LTE
δ→

=  but only if additional conditions are imposed (for 

instance, 1/ 1k kh h − → ). Moreover the LTE approximation is one order higher for our 

method.  
 

Extensions 
 
In comparison to original paper of Brumleve & Buck [1] the following extensions 
substantially enlarge NPP model towards practical applications:  
 
1) Introduction the reactive terms (source/sink) to the NPP problem in continuity 
equation: 
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2) Introduction multi-layers to NPP problem: 
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Detection limit of ISE 
 

As the NPP model is a general method to describe electrodiffusion processes, 
which lead to the formation of the membrane potential, thus it is able to take into account 
several parameters of ion-selective electrodes (ISEs) which are not addressed in simpler 
models. This section presents NPP modeling of detection limit of ISE (a comparison 
between the NPP model and simpler models and influence of various parameters on the 
detection limit of ISEs are discussed extensively elsewhere, [13]) by showing direct 
predictions of the models (Fig. 1) and also by inverse modeling (Fig. 2). Consequently it 
allows finding out the values of physical parameters which produce the desired detection 
limit. 

Selectivity (KIJ) and detection limit (DL) are basic parameters of all ion-selective 
electrodes. Models describing ISE behavior − and in consequence KIJ and DL − are still 
subject of a current debate. There are two main positions: the first one opts for simplicity 
while the other one stresses generality [6]. 

 
Fig. 1. Influence of measuring time for the ISE with preferred ion inner solution concentration 10-10 obtain 

using the NPP model. 
 

The cases described so far are of the direct type: compute the value of the 
detection limit for given parameters. But we can also pose an inverse problem namely: 
identify a set of parameters which give the best detection limit. A definition of the target 
function Err to be optimized was based on the calibration curves, eq. (12). These curves 
show dependence of the steady state potential ( lim ( ))ss t tϕ ϕ→∞= of ISE against logarithm 

of the primary ion concentration (for instance see Fig. 1). To obtain steady state value ssϕ  

one can solve the NPP system for times long enough to have solution not changing in 

time and use formula 
0

( ) ( , )
d

t E x t dxϕ = −∫  relating the electric field and potential.  
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However, in the case of detection limit one can perform the optimization 
procedure entirely within the model (not resorting to experiments) by defining the target 
function as the length of the linear part on the calibration curve (Fig. 1). The answer to 
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this problem is illustrated in Fig. 2 which shows contour plot of the detection limit vs. the 
measurement time and the concentration of the primary ion in the inner solution. 
 

 
Fig. 2. The time–concentration-detection limit maps obtained using the NPP model. 

 
Electrochemical Impedance Spectroscopy (EIS) 

 
Electrochemical impedance spectroscopy (EIS) is a useful tool for analyzing 

electrochemical systems mainly because it allows the separation and characterization of 
individual kinetic processes. Calculating for the first time the impedance spectra for any 
number of species without electroneutrality assumption was another important 
contribution of Buck and Brumleve. 

In general the impedance may be obtained from the linear response to a small 
perturbation, Fig 3. NPP model can also be used for the interpretation of electrochemical 
impedance spectra of ion-sensors using the analogy-type concept of the “equivalent” 
electric circuit but directly addressing the physicochemical properties of the sensors 
modeled and relating the transport properties of the bulk and interfaces (diffusivities, 
heterogeneous rate constants of transport across interfaces) to the characteristic features 
of complex impedances.  

 
Fig 3. The EIS schema − in a regime of linearity and time-invariance the function Z(ω) does not depend on 

V(t) and characterizes the system, [14] pp. 450−457. 
 

The standard method for obtaining impedance spectrum 

0{ ( ) ( ( ), ( ))} ,Z Z Z ωω ω ω >′ ′′= ⊂ �  both in numerical simulations and real-world 

experiments, is to subject a system to the sinusoidal perturbation 0( ) sinI t I tω=  with 
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frequency ω  and next to record (after some relaxation period) the sinusoidal response 

0( ) sin( ).V t V tω φ= −  This will produce one point (for a given ω) of the spectrum: 
0 0

0 0
( ) ( cos , sin ) .V V

I IZ ω φ φ= ∈�  Usually about 60−120 points are enough to get a desired 

spectrum. In numerical simulations it means that one must run the program repeatedly 
60−120 times. Here, again Brumleve and Buck provided interesting improvement 
allowing for one-run method to obtain full spectrum. In the paper this approach for EIS 
simulations is adopted. At first, under zero total current density (open-circuit) simulations 
are carried out until the steady state is obtained. Then the system is perturbed by a step 
current: 

 0 for 0,
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0 for 0.

I t
I t

t

≥
= 

<
 (13) 

where 0I  is the amplitude of the current  small enough 4(~ 10 )A−  to retain the linearity 

regime. Computations are carried out until the new steady state is reached 4( ~ 10 )t s . The 
Fourier transform of the potential-time function, (0, ) ( )t V t∞ ∋ a  allows the complex 
impedances to be determined: 
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where lim ( ).
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V V t∞ →∞
=  Using the analytical form of the Fourier transform of the step 

function perturbation, (13), one has the impedance components: 0( ) ( ) / ,Z V Iω ω ω′ ′′= − ⋅  

0( ) ( ) / .Z V Iω ω ω′′ ′= ⋅  

Fig. 4 shows EIS simulations with 3r =  ionic species for ion-selective membrane in 
contact with a bathing solution containing a primary ion for different cationic transfer 
rates at the membrane interfaces. The case presented assumes full dissociation in the 
homogenous membrane (no reaction terms were used). Both interfaces block the third 

ion: 3, 3, 3, 3, 0.L L R Rk k k k= = = =
r s r s

 

 

 
Fig. 4. Typical examples of simulated complex impedances for heterogeneous rate constants k = 10-4, 10-5, 
10-6 ms-1. The membrane width d = 200 µm, diffusion coefficients: D1=10-10, D2=D3=10-11 m2s-1. The 
relative permittivity 80rε =  (as for pure water) and charge numbers 1 2 32, 1, 1.z z z= + = + = −  
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Transport processes in concrete; a certain method of determination of diffusion 
coefficients 

 
The process of ionic electrodiffusion remains also important in some civil 

engineering problems. For instance, the long-term durability of many construction 
materials, such as reinforced concrete, is directly affected by the transport of chemical 
species. Corrosion of reinforcing steel due to exposure to chloride leads to degradation of 
steel reinforced concrete structures. 

Transport of ions inside a concrete is commonly assumed to be governed by 
Fick’s law of diffusion. However, during testing of chloride diffusivity what is often 
observed cannot be satisfactorily elucidated by Fick’s law. Long term testing − see 
schematic view in Fig. 5 − are often explained by assuming that the apparent diffusivity 
is not constant [15]. But what is almost universally ignored in this field is the fact that 
most species contained in cement paste or concrete are ionic, [ 16 ], (for example 

2Cl , OH , Na , K , Ca ),− − + + +  and electric field cannot be neglected − hence the NPP 
equations form more accurate description.  

Steel rebars in reinforced concrete are protected against corrosion due to alkaline 
reaction of concrete layer. Transport of aggressive ions, e.g., Cl− results in corrosion of 
steel in concrete and shortens the life time of a construction. To assess the chloride 
diffusivity a two chamber device is used, Fig. 5. Very simple model (steady state, space 
constant flux, electroneutrality) leads to the following solution 

 2 2 1
2 2 20

( ) (0)exp( ) ( )exp( ( )) ,
tDA DA DA

c t c t c s s t ds
V V V

= − + −∫
l l l

 (15) 

which upon knowing 1( )c t  and 2( )c t  can be easily used for retrieving .D  This may even 

be more simplified as usually one chamber “1” contains highly concentrated solution of 
Cl−  so 1 1( ) ,c t c const= =  and then (15) is converted to 

22 1ln(1 ( ) / ) .DA
V lc t c t− = −  

 

 
Fig. 5. Scheme of equipment used for chloride diffusion measurement: 1, 2 – two chambers where the 
concentration of chloride ions are controlled (V2 – the volume of chamber 2); 3 – the concrete sample of 
width l and area A. U – applied voltage (in the case of rapid diffusion measurement). 
 

Here again the NPP model provides better understanding and more accurate 
results especially in rapid chloride diffusion measurement by applying external field to 
speed up the process, see Fig. 5 where U is the applied voltage. While in this case the 
electric field in the sample cannot be ignored hence authors neglect the diffusion term  
and postulate the linear electric potential in the sample [17]: 

ECS Transactions, 61 (15) 21-30 (2014)

28
) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 128.114.34.22Downloaded on 2014-11-13 to IP 

http://ecsdl.org/site/terms_use


 , , ( ) 1
Cl Cl Cl

Cl Cl Clc j z F x
j D c x U

t x RT x

ϕ
ϕ

− − −

− − −∂ ∂ ∂  = − = = ⋅ − ∂ ∂ ∂  l
 (16) 

The inverse method based on the error function 

 2
,exp.

1 0

({ }) | ( , ,{ }) ( , ) | .
r

j i j i
i

Err D c x t D c x t dx∗ ∗

=

= −∑∫
l
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for the case 2{ , , }i Cl OH Ca− − +∈  gave the results: 

Time, t*, [h] 1210
Cl

D − ⋅  [m2s-1] 

Simplified model [Error! Bookmark not defined.] 

1210
Cl

D − ⋅  [m2s-1] 

NPP model 
24 0.69 0.76 
48 0.63 0.70 
72 0.41 0.54 
 

Conclusions 
 

• The Nernst-Planck-Poisson (NPP) model is physically relevant and effective 
method of electrodiffusion processes description. 

• The NPP model can be used to predict time dependent and steady-state solutions: 
e.g., the variability of selectivity, low detection limit and other parameters [13], 
[18], [19]. 

• All-solid-state ISEs with conducting polymer can be theoretically described using 
a multilayer NPP model [18]. 

• The NPP model opens new possibilities in the modeling and understanding of 
electrodiffusion processes in various applications, e.g.: membrane potential 
formation, transport processes in concrete, biological membranes, in routine 
clinical analysis [19] etc.  
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