6,124 research outputs found

    Adaptation by normal listeners to upward spectral shifts of speech: Implications for cochlear implants

    Get PDF
    Multi-channel cochlear implants typically present spectral information to the wrong ''place'' in the auditory nerve array, because electrodes can only be inserted partway into the cochlea. Although such spectral shifts are known to cause large immediate decrements in performance in simulations, the extent to which listeners can adapt to such shifts has yet to be investigated. Here, the effects of a four-channel implant in normal listeners have been simulated, and performance tested with unshifted spectral information and with the equivalent of a 6.5-mm basalward shift on the basilar membrane (1.3-2.9 octaves, depending on frequency). As expected, the unshifted simulation led to relatively high levels of mean performance (e;g., 64% of words in sentences correctly identified) whereas the shifted simulation led to very poor results (e.g., 1% of words). However, after just nine 20-min sessions of connected discourse tracking with the shifted simulation, performance improved significantly for the identification of intervocalic consonants, medial vowels in monosyllables, and words in sentences (30% of words). Also, listeners were able to track connected discourse of shifted signals without lipreading at rates up to 40 words per minute. Although we do not know if complete adaptation to the shifted signals is possible, it is clear that short-term experiments seriously exaggerate the long-term consequences of such spectral shifts. (C) 1999 Acoustical Society of America. [S0001-4966(99)02012-3]

    A rare case report of an ilio-psoas abscess due to entero-retroperitoneal fistula from gallstones post cholecystectomy

    Get PDF
    Introduction and importance: This is a novel case of a 50-year-old female presenting with several months of left iliac fossa pain, on a background of a cholecystectomy 5 years prior. The aetiology of her pain was an ilio-psoas abscess secondary to an entero-retroperitoneal gallstone fistula, a condition not previously reported in the literature. Case presentation: CT imaging revealed an abscess superior to the left psoas muscle, with a clear fistula to the small bowel and two calcified stones at the site of the fistula. The patient was managed operatively, with the fistula disconnected and a 5 cm section of small bowel disconnected. Clinical discussion: This is a novel case whereby a left sided iliopsoas abscess occurred due to entero-retroperitoneal fistulation of gallstones several years after the patient underwent laparoscopic cholecystectomy. Gallstone fistulation from within the small bowel does not appear to have previously been documented and the exact pathogenesis is unknown. Conclusion: Gallstones should remain an important, albeit rare, differential diagnosis of small bowel fistulation and abscess formation following cholecystectomy

    Virtual-crystal approximation that works: Locating a composition phase boundary in Pb(Zr_{1-x}Ti_3)O_3

    Full text link
    We present a new method for modeling disordered solid solutions, based on the virtual crystal approximation (VCA). The VCA is a tractable way of studying configurationally disordered systems; traditionally, the potentials which represent atoms of two or more elements are averaged into a composite atomic potential. We have overcome significant shortcomings of the standard VCA by developing a potential which yields averaged atomic properties. We perform the VCA on a ferroelectric oxide, determining the energy differences between the high-temperature rhombohedral, low-temperature rhombohedral and tetragonal phases of Pb(Zr_{1-x}Ti_x)O_3 at x=0.5 and comparing these results to superlattice calculations and experiment. We then use our new method to determine the preferred structural phase at x=0.4. We find that the low-temperature rhombohedral phase becomes the ground state at x=0.4, in agreement with experimental findings.Comment: 5 pages, no figure

    Updating "small world representations" in strategic decision-making under extreme uncertainty

    Get PDF
    The behavioral strategy literature investigates how decision makers might use Small World Representations (SWRs) to guide their actions in situations of extreme uncertainty, but says little about how such representations should be updated during the implementation phase. In this paper, we provide a framework to capture the relationship between SWRs, unknowns and Black Swans, and, drawing on the psychology of reasoning literature, explore different heuristic methods of inquiry that decision makers might use to update their SWRs. We compare the performance of two such methods⎯disconfirmation and counterfactual reasoning⎯in highly uncertain situations characterized by ambiguous and non-definite information. We find that counterfactual reasoning is superior to disconfirmation with respect to (1) counteracting the confirmation bias, (2) promoting the exploration of the scenario space, and (3) favoring the adoption of actions able to mitigate or exploit the consequences of Black Swans

    Anomalous Zero Sound

    Full text link
    We show that the anomalous term in the current, recently suggested by Son and Yamamoto, modifies the structure of the zero sound mode in the Fermi liquid in a magnetic field.Comment: 14 pages, 2 figure

    Holographic Wilsonian flows and emergent fermions in extremal charged black holes

    Full text link
    We study holographic Wilsonian RG in a general class of asymptotically AdS backgrounds with a U(1) gauge field. We consider free charged Dirac fermions in such a background, and integrate them up to an intermediate radial distance, yielding an equivalent low energy dual field theory. The new ingredient, compared to scalars, involves a `generalized' basis of coherent states which labels a particular half of the fermion components as coordinates or momenta, depending on the choice of quantization (standard or alternative). We apply this technology to explicitly compute RG flows of charged fermionic operators and their composites (double trace operators) in field theories dual to (a) pure AdS and (b) extremal charged black hole geometries. The flow diagrams and fixed points are determined explicitly. In the case of the extremal black hole, the RG flows connect two fixed points at the UV AdS boundary to two fixed points at the IR AdS_2 region. The double trace flow is shown, both numerically and analytically, to develop a pole singularity in the AdS_2 region at low frequency and near the Fermi momentum, which can be traced to the appearance of massless fermion modes on the low energy cut-off surface. The low energy field theory action we derive exactly agrees with the semi-holographic action proposed by Faulkner and Polchinski in arXiv:1001.5049 [hep-th]. In terms of field theory, the holographic version of Wilsonian RG leads to a quantum theory with random sources. In the extremal black hole background the random sources become `light' in the AdS_2 region near the Fermi surface and emerge as new dynamical degrees of freedom.Comment: 37 pages (including 8 pages of appendix), 10 figures and 2 table
    • …
    corecore