5,886 research outputs found

    Symmetry Breaking Phase Transitions in ABJM Theory with a Finite U(1) Chemical Potential

    Full text link
    We consider the U(1) charged sector of ABJM theory at finite temperature, which corresponds to the Reissner-Nordstrom AdS black hole in the dual type IIA supergravity description. Including back-reaction to the bulk geometry, we show that phase transitions occur to a broken phase where SU(4) R-symmetry of the field theory is broken spontaneously by the condensation of dimension one or two operators. We show both numerically and analytically that the relevant critical exponents for the dimension one operator agree precisely with those of mean field theory in the strongly coupled regime of the large N planar limit.Comment: 22 pages, 6 figures, typos corrected, references added, improved figures, minor changes, accepted for publication in Phys. Rev.

    Banishing AdS ghosts with a UV cutoff

    Get PDF
    A recent attempt to make sense of scalars in AdS with "Neumann boundary conditions" outside of the usual BF-window −(d/2)2<m2l2<−(d/2)2+1-(d/2)^2 < m^2 l^2 < -(d/2)^2 + 1 led to pathologies including (depending on the precise context) either IR divergences or the appearance of ghosts. Here we argue that such ghosts may be banished by imposing a UV cutoff. It is also possible to achieve this goal in certain UV completions. An example is the above AdS theory with a radial cutoff supplemented by particular boundary conditions on the cutoff surface. In this case we explicitly identify a region of parameter space for which the theory is ghost free. At low energies, this theory may be interpreted as the standard dual CFT (defined with "Dirichlet" boundary conditions) interacting with an extra scalar via an irrelevant interaction. We also discuss the relationship to recent works on holographic fermi surfaces and quantum criticality.Comment: 20 pages, 9 figure

    Adventures in Holographic Dimer Models

    Full text link
    We abstract the essential features of holographic dimer models, and develop several new applications of these models. First, semi-holographically coupling free band fermions to holographic dimers, we uncover novel phase transitions between conventional Fermi liquids and non-Fermi liquids, accompanied by a change in the structure of the Fermi surface. Second, we make dimer vibrations propagate through the whole crystal by way of double trace deformations, obtaining nontrivial band structure. In a simple toy model, the topology of the band structure experiences an interesting reorganization as we vary the strength of the double trace deformations. Finally, we develop tools that would allow one to build, in a bottom-up fashion, a holographic avatar of the Hubbard model.Comment: 22 pages, 8 figures; v2: brief description of case of pure D5 lattice added in sec.3; v3: minor typo fixed; v4: minor change

    Stellar spectroscopy: Fermions and holographic Lifshitz criticality

    Full text link
    Electron stars are fluids of charged fermions in Anti-de Sitter spacetime. They are candidate holographic duals for gauge theories at finite charge density and exhibit emergent Lifshitz scaling at low energies. This paper computes in detail the field theory Green's function G^R(w,k) of the gauge-invariant fermionic operators making up the star. The Green's function contains a large number of closely spaced Fermi surfaces, the volumes of which add up to the total charge density in accordance with the Luttinger count. Excitations of the Fermi surfaces are long lived for w <~ k^z. Beyond w ~ k^z the fermionic quasiparticles dissipate strongly into the critical Lifshitz sector. Fermions near this critical dispersion relation give interesting contributions to the optical conductivity.Comment: 38 pages + appendices. 9 figure

    New stability results for Einstein scalar gravity

    Full text link
    We consider asymptotically anti de Sitter gravity coupled to a scalar field with mass slightly above the Breitenlohner-Freedman bound. This theory admits a large class of consistent boundary conditions characterized by an arbitrary function WW. An important open question is to determine which WW admit stable ground states. It has previously been shown that the total energy is bounded from below if WW is bounded from below and the bulk scalar potential V(Ï•)V(\phi) admits a suitable superpotential. We extend this result and show that the energy remains bounded even in some cases where WW can become arbitrarily negative. As one application, this leads to the possibility that in gauge/gravity duality, one can add a double trace operator with negative coefficient to the dual field theory and still have a stable vacuum

    Notes on Properties of Holographic Matter

    Full text link
    Probe branes with finite worldvolume electric flux in the background created by a stack of Dp branes describe holographically strongly interacting fundamental matter at finite density. We identify two quantities whose leading low temperature behavior is independent of the dimensionality of the probe branes: specific heat and DC conductivity. This behavior can be inferred from the dynamics of the fundamental strings which provide a good description of the probe branes in the regime of low temperatures and finite densities. We also comment on the speed of sound on the branes and the temperature dependence of DC conductivity at vanishing charge density.Comment: 18 pages, 2 figures; v2: corrected error in Section 6, conclusions unchanged; v3: improved figures and added clarifying comment

    Power Output of Fast and Slow Skeletal Muscles of MDX (Dystrophic) and Control Mice After Clenbuterol Treatment

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72380/1/j.1469-445X.2000.02018.x.pd

    Holographic Wilsonian flows and emergent fermions in extremal charged black holes

    Full text link
    We study holographic Wilsonian RG in a general class of asymptotically AdS backgrounds with a U(1) gauge field. We consider free charged Dirac fermions in such a background, and integrate them up to an intermediate radial distance, yielding an equivalent low energy dual field theory. The new ingredient, compared to scalars, involves a `generalized' basis of coherent states which labels a particular half of the fermion components as coordinates or momenta, depending on the choice of quantization (standard or alternative). We apply this technology to explicitly compute RG flows of charged fermionic operators and their composites (double trace operators) in field theories dual to (a) pure AdS and (b) extremal charged black hole geometries. The flow diagrams and fixed points are determined explicitly. In the case of the extremal black hole, the RG flows connect two fixed points at the UV AdS boundary to two fixed points at the IR AdS_2 region. The double trace flow is shown, both numerically and analytically, to develop a pole singularity in the AdS_2 region at low frequency and near the Fermi momentum, which can be traced to the appearance of massless fermion modes on the low energy cut-off surface. The low energy field theory action we derive exactly agrees with the semi-holographic action proposed by Faulkner and Polchinski in arXiv:1001.5049 [hep-th]. In terms of field theory, the holographic version of Wilsonian RG leads to a quantum theory with random sources. In the extremal black hole background the random sources become `light' in the AdS_2 region near the Fermi surface and emerge as new dynamical degrees of freedom.Comment: 37 pages (including 8 pages of appendix), 10 figures and 2 table

    Anomalous Zero Sound

    Full text link
    We show that the anomalous term in the current, recently suggested by Son and Yamamoto, modifies the structure of the zero sound mode in the Fermi liquid in a magnetic field.Comment: 14 pages, 2 figure
    • …
    corecore