7,264 research outputs found
Rotational dynamics of a superhelix towed in a Stokes fluid
Motivated by the intriguing motility of spirochetes (helically-shaped
bacteria that screw through viscous fluids due to the action of internal
periplasmic flagella), we examine the fundamental fluid dynamics of
superhelices translating and rotating in a Stokes fluid. A superhelical
structure may be thought of as a helix whose axial centerline is not straight,
but also a helix. We examine the particular case where these two superimposed
helices have different handedness, and employ a combination of experimental,
analytic, and computational methods to determine the rotational velocity of
superhelical bodies being towed through a very viscous fluid. We find that the
direction and rate of the rotation of the body is a result of competition
between the two superimposed helices; for small axial helix amplitude, the body
dynamics is controlled by the short-pitched helix, while there is a cross-over
at larger amplitude to control by the axial helix. We find far better, and
excellent, agreement of our experimental results with numerical computations
based upon the method of Regularized Stokeslets than upon the predictions of
classical resistive force theory
Cooperation of Sperm in Two Dimensions: Synchronization, Attraction and Aggregation through Hydrodynamic Interactions
Sperm swimming at low Reynolds number have strong hydrodynamic interactions
when their concentration is high in vivo or near substrates in vitro. The
beating tails not only propel the sperm through a fluid, but also create flow
fields through which sperm interact with each other. We study the hydrodynamic
interaction and cooperation of sperm embedded in a two-dimensional fluid by
using a particle-based mesoscopic simulation method, multi-particle collision
dynamics (MPC). We analyze the sperm behavior by investigating the relationship
between the beating-phase difference and the relative sperm position, as well
as the energy consumption. Two effects of hydrodynamic interaction are found,
synchronization and attraction. With these hydrodynamic effects, a multi-sperm
system shows swarm behavior with a power-law dependence of the average cluster
size on the width of the distribution of beating frequencies
- …
