12 research outputs found

    Metropolis simulations of Met-Enkephalin with solvent-accessible area parameterizations

    Get PDF
    We investigate the solvent-accessible area method by means of Metropolis simulations of the brain peptide Met-Enkephalin at 300K K. For the energy function ECEPP/2 nine atomic solvation parameter (ASP) sets are studied. The simulations are compared with one another, with simulations with a distance dependent electrostatic permittivity ϵ(r)\epsilon (r), and with vacuum simulations (ϵ=2\epsilon =2). Parallel tempering and the biased Metropolis techniques RM1_1 are employed and their performance is evaluated. The measured observables include energy and dihedral probability densities (pds), integrated autocorrelation times, and acceptance rates. Two of the ASP sets turn out to be unsuitable for these simulations. For all other systems selected configurations are minimized in search of the global energy minima, which are found for the vacuum and the ϵ(r)\epsilon(r) system, but for none of the ASP models. Other observables show a remarkable dependence on the ASPs. In particular, we find three ASP sets for which the autocorrelations at 300 K are considerably smaller than for vacuum simulations.Comment: 10 pages and 8 figure

    The effect of pressure and guanidine hydrochloride on azurins mutated in the hydrophobic core

    No full text
    The unfolding of the blue-copper protein azurin from Pseudomonas aeruginosa by guanidine hydrochloride, under nonreducing conditions, has been studied by fluorescence techniques and circular dichroism. The denaturation transition may be fitted by a simple two-state model. The total free energy change from the native to the unfolded state was 9.4 ± 0.4 kcal·mol-1, while a lower value (6.4 ± 0.4 kcal·mol-1) was obtained for the metal depleted enzyme (apo-azurin) suggesting that the copper atom plays an important stabilization role. Azurin and apo-azurin were practically unaffected by hydrostatic pressure up to 3000 bar. Site-directed mutagenesis has been used to destabilize the hydrophobic core of azurin. In particular either hydrophobic residue Ile7 or Phe110 has been substituted with a serine. The free energy change of unfolding by guanidinium hydrochloride, resulted to be 5.8 ± 0.3 kcal·mol-1 and 4.8 ± 0.3 kcal·mol-1 for Ile7Ser and Phe110Ser, respectively, showing that both mutants are much less stable than the wild-type protein. The mutated apoproteins could be reversible denatured even by high pressure, as demonstrated by steady-state fluorescence measurements. The change in volume associated to the pressure-induced unfolding was estimated to be -24 mL·mol-1 for 11e7Ser and -55 mL·mol-1 for Phe110Ser. These results show that the tight packing of the hydrophobic residues that characterize the inner structure of azurin is fundamental for the protein stability. This suggests that the proper assembly of the hydrophobic core is one of the earliest and most crucial event in the folding process, bearing important implication for de novo design of proteins

    Molecular mechanisms and biological role of Campylobacter jejuni attachment to host cells.

    No full text
    Adhesion to host cells is an important step in pathogenesis of Campylobacter jejuni, which is the most prevalent bacterial cause of human gastroenteritis worldwide. In contrast to other bacteria such as E. coli and Salmonella, adherence of C. jejuni is not mediated by fimbria or pili. A number of C. jejuni adhesion-related factors have been described. However, the results obtained by different researchers in different laboratories are often contradictory and inconclusive, with only some of the factors described being confirmed as true adhesins. In this review, we present the current state of studies on the mechanisms of attachment of C. jejuni to host cells
    corecore