366 research outputs found

    Regulation of papillary plasma flow by angiotensin II

    Get PDF
    Regulation of papillary plasma flow by angiotensin II. We examined in anesthetized dogs the effects of left (L) intrarenal artery infusion of angiotensin II (AII) on renal hemodynamics, urinary concentration and Na excretion, and papillary plasma flow (PPF) (measured by the albumin accumulation technique) in both kidneys. Following AII infusion (0.5 ng/kg/min) into the L renal artery, urinary Na excretion decreased and osmolality increased slightly ipsilaterally, whereas Na excretion did not change significantly and osmolality decreased in the right (R) kidney. PPF was significantly lower in the L compared to the R kidney. When saline loading was superimposed on L intrarenal AII infusion, there was a blunted natriuretic response ipsilaterally with a significantly smaller decrease in urine osmolality compared with the R kidney. PPF increased significantly in the R, but not in the L kidney. Finally, AII blockade with saralasin prior to AII infusion and saline loading prevented the differences between the two kidneys, including PPF. In all groups GFR and renal blood flow did not differ between the two kidneys before or after AII. These data suggest that AII regulates regional blood flow in the medulla, and that the exogenously administered AII induces papillary ischemia, which serves to preserve medullary hypertonicity, preventing an increase in PPF during saline loading, and possibly contributing to the diminished natriuretic response

    Biological Control of Fenusa pusilla (Hymenoptera: Tenthredinidae) in the Northeastern United States: A Thirty-four Year Perspective on Efficacy

    Get PDF
    Parasitoid releases against the birch leafminer Fenusa pusilla (Lepeletier) (Hymenoptera: Tenthredinidae) in eastern North America began in 1974, with releases in eastern Canada, followed by others in the Middle Atlantic States and New England. Of 4 parasitoids released, only 1, the ichneumonid Lathrolestes nigricollis (Thompson), established and spread widely. Studies of its preliminary impacts were made in several locations in the 1980s and 1990s, but full impact of the parasitoid on host density was not yet achieved in that period. Here we report results of surveys in 7 states (MA, CT, RI, NY, PA, NJ, DE) in 2007 documenting the current birch leaf miner levels (as % of leaves mined in spring) and parasitism. Survey results show that the pest has declined dramatically to barely detectable levels in 5 states (MA, CT, RI, NY, PA) but that in southern NJ, the pest remains abundant (ca 50% leaves mined) despite significant parasitism levels. Survey results, in context with previous evaluations made when populations were still declining, show that the project has been completely successful in much of the northeastern USA, but that there is a southern limit to efficacy in mid-New Jersey. Possible reasons for lack of control in this area, in contrast to high levels of control elsewhere, are discussed

    CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability

    Get PDF
    A characteristic of memory T (TM) cells is their ability to mount faster and stronger responses to reinfection than naïve T (TN) cells do in response to an initial infection. However, the mechanisms that allow this rapid recall are not completely understood. We found that CD8 TM cells have more mitochondrial mass than CD8 TN cells and, that upon activation, the resulting secondary effector T (TE) cells proliferate more quickly, produce more cytokines, and maintain greater ATP levels than primary effector T cells. We also found that after activation, TM cells increase oxidative phosphorylation and aerobic glycolysis and sustain this increase to a greater extent than TN cells, suggesting that greater mitochondrial mass in TM cells not only promotes oxidative capacity, but also glycolytic capacity. We show that mitochondrial ATP is essential for the rapid induction of glycolysis in response to activation and the initiation of proliferation of both TN and TM cells. We also found that fatty acid oxidation is needed for TM cells to rapidly respond upon restimulation. Finally, we show that dissociation of the glycolysis enzyme hexokinase from mitochondria impairs proliferation and blocks the rapid induction of glycolysis upon T-cell receptor stimulation in TM cells. Our results demonstrate that greater mitochondrial mass endows TM cells with a bioenergetic advantage that underlies their ability to rapidly recall in response to reinfection

    Posttranscriptional control of T cell effector function by aerobic glycolysis

    Get PDF
    A “switch” from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete environment, remains incompletely understood. We show here that aerobic glycolysis is specifically required for effector function in T cells but that this pathway is not necessary for proliferation or survival. When activated T cells are provided with costimulation and growth factors but are blocked from engaging glycolysis, their ability to produce IFN-γ is markedly compromised. This defect is translational and is regulated by the binding of the glycolysis enzyme GAPDH to AU-rich elements within the 3′ UTR of IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through fluctuations in its expression, controls effector cytokine production. Thus, aerobic glycolysis is a metabolically regulated signaling mechanism needed to control cellular function

    Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals

    Get PDF
    Background: Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. Methodology/Principal Findings: By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell’s law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Conclusions/Significance: Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or fo

    Postural Hypo-Reactivity in Autism is Contingent on Development and Visual Environment: A Fully Immersive Virtual Reality Study

    Get PDF
    Although atypical motor behaviors have been associated with autism, investigations regarding their possible origins are scarce. This study assessed the visual and vestibular components involved in atypical postural reactivity in autism. Postural reactivity and stability were measured for younger (12–15 years) and older (16–33 years) autistic participants in response to a virtual tunnel oscillating at different frequencies. At the highest oscillation frequency, younger autistic participants showed significantly less instability compared to younger typically-developing participants; no such group differences were evidenced for older participants. Additionally, no significant differences in postural behavior were found between all 4 groups when presented with static or without visual information. Results confirm that postural hypo-reactivity to visual information is present in autism, but is contingent on both visual environment and development

    GLP-1 receptor signalling promotes β-cell glucose metabolism via mTOR-dependent HIF-1α activation

    Get PDF
    Glucagon-like peptide-1 (GLP-1) promotes insulin secretion from pancreatic ß-cells in a glucose dependent manner. Several pathways mediate this action by rapid, kinase phosphorylation-dependent, but gene expression-independent mechanisms. Since GLP-1-induced insulin secretion requires glucose metabolism, we aimed to address the hypothesis that GLP-1 receptor (GLP-1R) signalling can modulate glucose uptake and utilization in ß-cells. We have assessed various metabolic parameters after short and long exposure of clonal BRIN-BD11 ß-cells and rodent islets to the GLP-1R agonist Exendin-4 (50 nM). Here we report for the first time that prolonged stimulation of the GLP-1R for 18 hours promotes metabolic reprogramming of ß-cells. This is evidenced by up-regulation of glycolytic enzyme expression, increased rates of glucose uptake and consumption, as well as augmented ATP content, insulin secretion and glycolytic flux after removal of Exendin-4. In our model, depletion of Hypoxia-Inducible Factor 1 alpha (HIF-1a) impaired the effects of Exendin-4 on glucose metabolism, while pharmacological inhibition of Phosphoinositide 3-kinase (PI3K) or mTOR completely abolished such effects. Considering the central role of glucose catabolism for stimulus-secretion coupling in ß-cells, our findings suggest that chronic GLP-1 actions on insulin secretion include elevated ß-cell glucose metabolism. Moreover, our data reveal novel aspects of GLP-1 stimulated insulin secretion involving de novo gene expression

    Ubiquitous Crossmodal Stochastic Resonance in Humans: Auditory Noise Facilitates Tactile, Visual and Proprioceptive Sensations

    Get PDF
    BACKGROUND: Stochastic resonance is a nonlinear phenomenon whereby the addition of noise can improve the detection of weak stimuli. An optimal amount of added noise results in the maximum enhancement, whereas further increases in noise intensity only degrade detection or information content. The phenomenon does not occur in linear systems, where the addition of noise to either the system or the stimulus only degrades the signal quality. Stochastic Resonance (SR) has been extensively studied in different physical systems. It has been extended to human sensory systems where it can be classified as unimodal, central, behavioral and recently crossmodal. However what has not been explored is the extension of this crossmodal SR in humans. For instance, if under the same auditory noise conditions the crossmodal SR persists among different sensory systems. METHODOLOGY/PRINCIPAL FINDINGS: Using physiological and psychophysical techniques we demonstrate that the same auditory noise can enhance the sensitivity of tactile, visual and propioceptive system responses to weak signals. Specifically, we show that the effective auditory noise significantly increased tactile sensations of the finger, decreased luminance and contrast visual thresholds and significantly changed EMG recordings of the leg muscles during posture maintenance. CONCLUSIONS/SIGNIFICANCE: We conclude that crossmodal SR is a ubiquitous phenomenon in humans that can be interpreted within an energy and frequency model of multisensory neurons spontaneous activity. Initially the energy and frequency content of the multisensory neurons' activity (supplied by the weak signals) is not enough to be detected but when the auditory noise enters the brain, it generates a general activation among multisensory neurons of different regions, modifying their original activity. The result is an integrated activation that promotes sensitivity transitions and the signals are then perceived. A physiologically plausible model for crossmodal stochastic resonance is presented
    corecore