4 research outputs found

    Grayanotoxin I variation across tissues and species of Rhododendron suggests pollinator-herbivore defence trade-offs

    Get PDF
    Grayanotoxin I (GTX I) is a major toxin in leaves of Rhododendron species, where it provides a defence against insect and vertebrate herbivores. Surprisingly, it is also present in R. ponticum nectar, and this can hold important implications for plant-pollinator mutualisms. However, knowledge of GTX I distributions across the genus Rhododendron and in different plant materials is currently limited, despite the important ecological function of this toxin. Here we characterise GTX I expression in the leaves, petals, and nectar of seven Rhododendron species. Our results indicated interspecific variation in GTX I concentration across all species. GTX I concentrations were consistently higher in leaves compared to petals and nectar. Our findings provide preliminary evidence for phenotypic correlation between GTX I concentrations in defensive tissues (leaves and petals) and floral rewards (nectar), suggesting that Rhododendron species may commonly experience functional trade-offs between herbivore defence and pollinator attraction

    Grayanotoxin I variation across different tissues and species of Rhododendron suggest herbivore defence trade-offs

    Get PDF
    Grayanotoxin I (GTX I) is a major toxin in leaves of Rhododendron species, where it provides a defence against insect and vertebrate herbivores. Surprisingly, it is also present in R. ponticum nectar, and this can hold important implications for plant-pollinator mutualisms. However, knowledge of GTX I distributions across the genus Rhododendron and in different plant materials is currently limited, despite the important ecological function of this toxin. Here we characterise GTX I expression in the leaves, petals, and nectar of seven Rhododendron species. Our results indicated interspecific variation in GTX I concentration across all species.GTX I concentrations were consistently higher in leaves compared to petals and nectar. Our findings provide preliminary evidence for phenotypic correlation between GTX I concentrations in defensive tissues (leaves and petals) and floral rewards (nectar), suggesting that Rhododendron species may commonly experience functional trade-offs between herbivore defence and pollinator attraction
    corecore