235 research outputs found
GHZ extraction yield for multipartite stabilizer states
Let be an arbitrary stabilizer state distributed between three
remote parties, such that each party holds several qubits. Let be a
stabilizer group of . We show that can be converted by local
unitaries into a collection of singlets, GHZ states, and local one-qubit
states. The numbers of singlets and GHZs are determined by dimensions of
certain subgroups of . For an arbitrary number of parties we find a
formula for the maximal number of -partite GHZ states that can be extracted
from by local unitaries. A connection with earlier introduced measures
of multipartite correlations is made. An example of an undecomposable
four-party stabilizer state with more than one qubit per party is given. These
results are derived from a general theoretical framework that allows one to
study interconversion of multipartite stabilizer states by local Clifford group
operators. As a simple application, we study three-party entanglement in
two-dimensional lattice models that can be exactly solved by the stabilizer
formalism.Comment: 12 pages, 1 figur
Quality and Safety Aspects of Infant Nutrition
Quality and safety aspects of infant nutrition are of key importance for child health, but oftentimes they do not get much attention by health care professionals whose interest tends to focus on functional benefits of early nutrition. Unbalanced diets and harmful food components induce particularly high risks for untoward effects in infants because of their rapid growth, high nutrient needs, and their typical dependence on only one or few foods during the first months of life. The concepts, standards and practices that relate to infant food quality and safety were discussed at a scientific workshop organized by the Child Health Foundation and the Early Nutrition Academy jointly with the European Society for Paediatric Gastroenterology, Hepatology and Nutrition, and a summary is provided here. The participants reviewed past and current issues on quality and safety, the role of different stakeholders, and recommendations to avert future issues. It was concluded that a high level of quality and safety is currently achieved, but this is no reason for complacency. The food industry carries the primary responsibility for the safety and suitability of their products, including the quality of composition, raw materials and production processes. Introduction of new or modified products should be preceded by a thorough science based review of suitability and safety by an independent authority. Food safety events should be managed on an international basis. Global collaboration of food producers, food-safety authorities, paediatricians and scientists is needed to efficiently exchange information and to best protect public health. Copyright (C) 2012 S. Karger AG, Base
Calculation of the Phase Behavior of Lipids
The self-assembly of monoacyl lipids in solution is studied employing a model
in which the lipid's hydrocarbon tail is described within the Rotational
Isomeric State framework and is attached to a simple hydrophilic head.
Mean-field theory is employed, and the necessary partition function of a single
lipid is obtained via a partial enumeration over a large sample of molecular
conformations. The influence of the lipid architecture on the transition
between the lamellar and inverted-hexagonal phases is calculated, and
qualitative agreement with experiment is found.Comment: to appear in Phys.Rev.
Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces
The concept of optical phase discontinuities is applied to the design and
demonstration of aberration-free planar lenses and axicons, comprising a phased
array of ultrathin subwavelength spaced optical antennas. The lenses and
axicons consist of radial distributions of V-shaped nanoantennas that generate
respectively spherical wavefronts and non-diffracting Bessel beams at telecom
wavelengths. Simulations are also presented to show that our aberration-free
designs are applicable to high numerical aperture lenses such as flat
microscope objectives
Entangling single photons on a beamsplitter
We report on a scheme for the creation of time-bin entangled states out of
two subsequent single photons. Both photons arrive on the same input port of a
beamsplitter and the situation in which the photons leave the beamsplitter on
different output ports is post-selected. We derive a full quantum mechanical
analysis of such time-bin entanglement for emitters subject to uncorrelated
dephasing processes and apply this model to sequential single photons emerging
from a single semiconductor quantum dot. Our results indicate that the
visibility of entanglement is degraded by decoherence effects in the quantum
dot, but can be restored by use of CQED effects, namely the Purcell effect.Comment: Accepted EPJ
On-demand semiconductor single-photon source with near-unity indistinguishability
Single photon sources based on semiconductor quantum dots offer distinct
advantages for quantum information, including a scalable solid-state platform,
ultrabrightness, and interconnectivity with matter qubits. A key prerequisite
for their use in optical quantum computing and solid-state networks is a high
level of efficiency and indistinguishability. Pulsed resonance fluorescence
(RF) has been anticipated as the optimum condition for the deterministic
generation of high-quality photons with vanishing effects of dephasing. Here,
we generate pulsed RF single photons on demand from a single,
microcavity-embedded quantum dot under s-shell excitation with 3-ps laser
pulses. The pi-pulse excited RF photons have less than 0.3% background
contributions and a vanishing two-photon emission probability.
Non-postselective Hong-Ou-Mandel interference between two successively emitted
photons is observed with a visibility of 0.97(2), comparable to trapped atoms
and ions. Two single photons are further used to implement a high-fidelity
quantum controlled-NOT gate.Comment: 11 pages, 11 figure
- …