8 research outputs found

    Production of Polyhydroxybutyrate (PHB) by Bacteria Isolated from Soil of Saudi Arabia

    No full text
    One of the greatest problems in environment is accumulating of non-biodegradable polymers. Due to the hardness of these polymers, the biodegradation process is very slow. Several microorganisms have the potential for production of biodegradable polymers such as PHAs. Polyhydroxyalkanoates (PHAs) found in the cytoplasm of the bacterial cell as sources of carbon and energy. In the current study, 20 microbial strains related to bacteria were isolated from different areas in Makkah. Collected isolates were screened to examine their ability in production of PHB. Bacillus sp (F15) were selected based on their high production of PHB. Bacillus was maintained on (Luria Bertani broth medium) which showed PHB maximum production after 48 hours at 30 °C and the optimum pH is 7 under shaking conditions. Carbon and nitrogen sources were used to study their affect on production of PHB. Glucose is the best carbon source for PHB production, while (NH4 ) 2 SO4 is the best nitrogen source. Strain (F15) was characterized by morphological, biochemical test and identified as Bacillus sp

    Microbiological Quality Assessment of Skin and Body care Cosmetics by using Challenge test

    No full text
    Cosmetic products may be exposed to microbial contamination during storage or transport, and to avoid the risk of microbial growth, manufacturers add preservative compounds as a protection for the product from spoilage. The Microbial Challenge test is a procedure to evaluate the preservative efficacy by challenging the product with testing microorganisms to determine the quality of preservation. In this study, thirty-two cosmetics products used for body and skin care were collected from markets and pharmacies in Mecca region, these products are subjected to microbiological analysis, results show that most samples are contaminated except six samples. Non contaminated samples were subjected to European Pharmacopeia 7.0 standards. Results show that two samples, foaming gel and body and face cream are failed to demonstrate the required microbiocidal effect against the S.aureus test species, results recorded 1.21 x 105 and 6.80 x 105 (CFU/ml) respectively at the second day of incubation, other products: shower gel, hand wash, body lotion and shampoo demonstrate that required microbiocidal effect against the test species during day 2, 7, 14 until day 28th. The microbial count number is less than 10 during all incubation periods. To prevent contamination in cosmetics, manufacturers are required to add a good preservative system to the products and examine them before sale. Due to the high percentage of microbial contamination in cosmetics in Mecca region and for consumers safety, this study is prepared

    Functional Interpretation of Cross-Talking Pathways with Emphasis on Amino Acid Metabolism in Rhizosphere Microbiome of the Wild Plant Moringa oleifera

    No full text
    The functional processes and mutual benefits of the wild plant Moringa oleifera and its rhizosphere microbiome were studied via metagenomic whole-genome shotgun sequencing (mWGS) in comparison with a bulk soil microbiome. The results indicated high gene abundance of the four KEGG categories, “Cellular Processes”, “Environmental Information Processing”, “Genetic Information Processing”, and “Metabolism”, in the rhizosphere microbiome. Most of the enriched enzymes in rhizobacteria are assigned to the pathway “Amino acids metabolism”, where soil-dwelling microbes use amino acids as a defense mechanism against phytopathogens, while promoting growth, colonizing the cohabiting commensal microbes and conferring tolerance against abiotic stresses. In the present study, it was proven that these beneficial microbes include Bacillus subtilis, Pseudomonas fluorescens, and Escherichia coli. Mineral solubilization in these rhizobacteria can make nutrients available for plant utilization. These rhizobacteria extensively synthesize and metabolize amino acids at a high rate, which makes nitrogen available in different forms for plants and microbes. Amino acids in the rhizosphere might stand mainly as an intermediate switcher for the direction of the soil nitrogen cycle. Indole acetic acid (IAA) was proven to be synthesized by these beneficial rhizobacteria via route indole-3-pyruvate (IPyA) of the pathway “Tryptophan metabolism”. This hormone might stand as a shuttle signaling molecule between M. oleifera and its rhizobacteria. Tryptophan is also metabolized to promote other processes with important industrial applications. Rhizobacteria were also proven to breakdown starch and sucrose into glucose, which is the primary metabolic fuel of living organisms. In conclusion, we assume that the metabolic processes in the rhizosphere microbiome of this wild plant can be eventually utilized in boosting the sustainability of agriculture applications and the plant’s ability to benefit from soil nutrients when they are not in the form available for plant root absorption

    Abundant resistome determinants in rhizosphere soil of the wild plant Abutilon fruticosum

    No full text
    Abstract A metagenomic whole genome shotgun sequencing approach was used for rhizospheric soil micribiome of the wild plant Abutilon fruticosum in order to detect antibiotic resistance genes (ARGs) along with their antibiotic resistance mechanisms and to detect potential risk of these ARGs to human health upon transfer to clinical isolates. The study emphasized the potential risk to human health of such human pathogenic or commensal bacteria, being transferred via food chain or horizontally transferred to human clinical isolates. The top highly abundant rhizospheric soil non-redundant ARGs that are prevalent in bacterial human pathogens or colonizers (commensal) included mtrA, soxR, vanRO, golS, rbpA, kdpE, rpoB2, arr-1, efrA and ileS genes. Human pathogenic/colonizer bacteria existing in this soil rhizosphere included members of genera Mycobacterium, Vibrio, Klebsiella, Stenotrophomonas, Pseudomonas, Nocardia, Salmonella, Escherichia, Citrobacter, Serratia, Shigella, Cronobacter and Bifidobacterium. These bacteria belong to phyla Actinobacteria and Proteobacteria. The most highly abundant resistance mechanisms included antibiotic efflux pump, antibiotic target alteration, antibiotic target protection and antibiotic inactivation. antimicrobial resistance (AMR) families of the resistance mechanism of antibiotic efflux pump included resistance-nodulation-cell division (RND) antibiotic efflux pump (for mtrA, soxR and golS genes), major facilitator superfamily (MFS) antibiotic efflux pump (for soxR gene), the two-component regulatory kdpDE system (for kdpE gene) and ATP-binding cassette (ABC) antibiotic efflux pump (for efrA gene). AMR families of the resistance mechanism of antibiotic target alteration included glycopeptide resistance gene cluster (for vanRO gene), rifamycin-resistant beta-subunit of RNA polymerase (for rpoB2 gene) and antibiotic-resistant isoleucyl-tRNA synthetase (for ileS gene). AMR families of the resistance mechanism of antibiotic target protection included bacterial RNA polymerase-binding protein (for RbpA gene), while those of the resistance mechanism of antibiotic inactivation included rifampin ADP-ribosyltransferase (for arr-1 gene). Better agricultural and food transport practices are required especially for edible plant parts or those used in folkloric medicine

    Functional annotation of rhizospheric phageome of the wild plant species Moringa oleifera

    Get PDF
    IntroductionThe study aims to describe phageome of soil rhizosphere of M.oleifera in terms of the genes encoding CAZymes and other KEGG enzymes.MethodsGenes of the rhizospheric virome of the wild plant species Moringa oleifera were investigated for their ability to encode useful CAZymes and other KEGG (Kyoto Encyclopedia of Genes and Genomes) enzymes and to resist antibiotic resistance genes (ARGs) in the soil.ResultsAbundance of these genes was higher in the rhizospheric microbiome than in the bulk soil. Detected viral families include the plant viral family Potyviridae as well as the tailed bacteriophages of class Caudoviricetes that are mainly associated with bacterial genera Pseudomonas, Streptomyces and Mycobacterium. Viral CAZymes in this soil mainly belong to glycoside hydrolase (GH) families GH43 and GH23. Some of these CAZymes participate in a KEGG pathway with actions included debranching and degradation of hemicellulose. Other actions include biosynthesizing biopolymer of the bacterial cell wall and the layered cell wall structure of peptidoglycan. Other CAZymes promote plant physiological activities such as cell-cell recognition, embryogenesis and programmed cell death (PCD). Enzymes of other pathways help reduce the level of soil H2O2 and participate in the biosynthesis of glycine, malate, isoprenoids, as well as isoprene that protects plant from heat stress. Other enzymes act in promoting both the permeability of bacterial peroxisome membrane and carbon fixation in plants. Some enzymes participate in a balanced supply of dNTPs, successful DNA replication and mismatch repair during bacterial cell division. They also catalyze the release of signal peptides from bacterial membrane prolipoproteins. Phages with the most highly abundant antibiotic resistance genes (ARGs) transduce species of bacterial genera Pseudomonas, Streptomyces, and Mycobacterium. Abundant mechanisms of antibiotic resistance in the rhizosphere include “antibiotic efflux pump” for ARGs soxR, OleC, and MuxB, “antibiotic target alteration” for parY mutant, and “antibiotic inactivation” for arr-1.DiscussionThese ARGs can act synergistically to inhibit several antibiotics including tetracycline, penam, cephalosporin, rifamycins, aminocoumarin, and oleandomycin. The study highlighted the issue of horizontal transfer of ARGs to clinical isolates and human gut microbiome

    Exploration of genes encoding KEGG pathway enzymes in rhizospheric microbiome of the wild plant Abutilon fruticosum

    No full text
    Abstract The operative mechanisms and advantageous synergies existing between the rhizobiome and the wild plant species Abutilon fruticosum were studied. Within the purview of this scientific study, the reservoir of genes in the rhizobiome, encoding the most highly enriched enzymes, was dominantly constituted by members of phylum Thaumarchaeota within the archaeal kingdom, phylum Proteobacteria within the bacterial kingdom, and the phylum Streptophyta within the eukaryotic kingdom. The ensemble of enzymes encoded through plant exudation exhibited affiliations with 15 crosstalking KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathways. The ultimate goal underlying root exudation, as surmised from the present investigation, was the biosynthesis of saccharides, amino acids, and nucleic acids, which are imperative for the sustenance, propagation, or reproduction of microbial consortia. The symbiotic companionship existing between the wild plant and its associated rhizobiome amplifies the resilience of the microbial community against adverse abiotic stresses, achieved through the orchestration of ABA (abscisic acid) signaling and its cascading downstream effects. Emergent from the process of exudation are pivotal bioactive compounds including ATP, D-ribose, pyruvate, glucose, glutamine, and thiamine diphosphate. In conclusion, we hypothesize that future efforts to enhance the growth and productivity of commercially important crop plants under both favorable and unfavorable environmental conditions may focus on manipulating plant rhizobiomes
    corecore