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Introduction: The study aims to describe phageome of soil rhizosphere of

M.oleifera in terms of the genes encoding CAZymes and other KEGG enzymes.

Methods: Genes of the rhizospheric virome of the wild plant species Moringa

oleifera were investigated for their ability to encode useful CAZymes and other

KEGG (Kyoto Encyclopedia of Genes and Genomes) enzymes and to resist

antibiotic resistance genes (ARGs) in the soil.

Results: Abundance of these genes was higher in the rhizospheric microbiome

than in the bulk soil. Detected viral families include the plant viral family

Potyviridae as well as the tailed bacteriophages of class Caudoviricetes that

are mainly associated with bacterial genera Pseudomonas, Streptomyces and

Mycobacterium. Viral CAZymes in this soil mainly belong to glycoside hydrolase

(GH) families GH43 and GH23. Some of these CAZymes participate in a KEGG

pathway with actions included debranching and degradation of hemicellulose.

Other actions include biosynthesizing biopolymer of the bacterial cell wall

and the layered cell wall structure of peptidoglycan. Other CAZymes promote

plant physiological activities such as cell-cell recognition, embryogenesis and

programmed cell death (PCD). Enzymes of other pathways help reduce the level

of soil H2O2 and participate in the biosynthesis of glycine, malate, isoprenoids,

as well as isoprene that protects plant from heat stress. Other enzymes act

in promoting both the permeability of bacterial peroxisome membrane and

carbon fixation in plants. Some enzymes participate in a balanced supply

of dNTPs, successful DNA replication and mismatch repair during bacterial

cell division. They also catalyze the release of signal peptides from bacterial

membrane prolipoproteins. Phages with the most highly abundant antibiotic

resistance genes (ARGs) transduce species of bacterial genera Pseudomonas,

Streptomyces, andMycobacterium. Abundantmechanisms of antibiotic resistance

in the rhizosphere include “antibiotic e	ux pump” for ARGs soxR,OleC, andMuxB,

“antibiotic target alteration” for parY mutant, and “antibiotic inactivation” for arr-1.
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Discussion: These ARGs can act synergistically to inhibit several antibiotics

including tetracycline, penam, cephalosporin, rifamycins, aminocoumarin, and

oleandomycin. The study highlighted the issue of horizontal transfer of ARGs to

clinical isolates and human gut microbiome.
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1. Introduction

Moringa oleifera is an edible wild plant that can withstand

adverse environmental conditions. This plant is native to several

countries, including Brazil, Egypt, India, Pakistan, Thailand, and

Saudi Arabia (Al-Eisawi and Al-Ruzayza, 2015; Gupta and Ahmed,

2020). M. oleifera is very useful at medicinal and nutritional

levels as it is a good source of proteins and vitamins, in addition

to being rich in beta-carotene and phenolics. It also acts as

cardiac and circulatory stimulants and lowers blood pressure and

cholesterol levels (Fahey, 2005). Some parts of this wild have several

pharmaceutical properties, such as anti-cancer, anti-inflammatory,

anti-oxidant, anti-diabetic, anti-bacterial, and anti-fungal (Koul

and Chase, 2015; Kumar et al., 2016; Saini et al., 2016; Gupta

and Ahmed, 2020; Milla et al., 2021). It also has agricultural

applications including water purification and is suitable for human

consumption, and some parts of the plant can be used as animal

fodder, fertilizer, and livestock forage (Rockwood et al., 2013).

Gene cataloging via metagenomic whole-genome sequencing

approach allows the detection of genes of rhizospheric soil

microbiomes such as bacteria, archaea, eukaryotic microorganisms,

and viruses (Vorholt et al., 2017; Odelade and Babalola, 2019).

Functional annotation of metagenomes allows studying antibiotic

resistance genes (ARGs) and those involved in Carbohydrate-

Active enZyme (CAZyme) enrichment and cross-talking Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways. The

latter three gene categories participate in the interaction between

microbiomes and intact plant roots, which results in shaping

microbiome signatures and in the assemblage of beneficial

microbial communities, on the one hand, and in promoting

plant growth and development, on the other hand (Raes et al.,

2007).

Differential abundance of microbes in the soil rhizosphere

is mainly due to their differential response to varying chemical

compositions of the plant root exudates that seem to affect

microbial growth dynamics, biomass, diversity, community

assembly, and metabolic potential (Pett-Ridge et al., 2021). It was

recently reported that microbiomes of the microbial communities

in plant rhizosphere are highly abundant in genes encoding

CAZymes that act in building/degrading soil carbohydrates

(Lombard et al., 2014; Levy et al., 2018). CAZymes with known

functions were assigned to CAZy classes (level 1) and families

(level 2), received enzyme classification (EC) codes (level EC),

and then were deposited in CAZy (http://www.cazy.org/) and

CAZypedia (https://www.cazypedia.org/) databases. The high

potential of the rhizosphere genome translates into a high rate of

complex carbohydrate build-up/degradation, which differs from

one environmental niche to the other (Nuccio et al., 2020).

Metagenomic analysis via the KEGG database represents

another dimension of the functional annotation of genes and

proteins in soil microbiomes and the detection of cross-talking

pathways as a response to plant–microbe interactions (Kanehisa

et al., 2016). In the year 2015, KEGG authorities added categories

of viruses and plasmids to the KEGG database as mobile genetic

elements (MGEs) and as key players of the metagenome signature

and function. Thus, gene catalog profiling can result in the

detection of genes that likely exist in such MGEs to be horizontally

transduced from one microbe to another genetically related

microbe via specific patterns of horizontal gene transfer (HGT).

This speculation raises the concern that ARGs possibly exist in

mobile genetic elements (MGEs) of rhizospheric bacteria, which

might pass through an edible plant, such as M. oleifera, to be

eventually transmitted to the human gut or skin microbiome and

transform/transduce pathogenic bacteria, mostly of similar species

(Chen et al., 2019). However, there is not enough information

regarding the type and severity of new versatile ARGs that possibly

exist in the wild plant rhizosphere (Obermeier et al., 2021).

Recent reports showed the possible influence of MGEs in HGT

when studying metagenomics of freshwater and wastewater and

demonstrated the occurrence of a large number of functional

antibiotic resistance genes (ARGs) in their phageomes (Moon

et al., 2020; Wang et al., 2021). The most dominant phage families

known to harbor ARGs belong to tailed bacteriophages of the

class Caudoviricetes, while the most abundant ARGs in this class

are those for tetracycline and rifampicin resistance. Interestingly,

phages likely incline to select specific ARGs, especially those

encoding ribosomal protection proteins and RNA polymerases,

e.g., subtypes lsaE, tet44, tetM, tetP, macB, MdlB, and rpoB (Wang

et al., 2021).

The term horizontal gene transfer (HGT) refers to the

transfer of genetic information mostly among genetically related

organisms. When this action includes ARGs, it serves in fueling

the evolution of pathogenic organisms (Burmeister, 2015). In total,

three mechanisms of bacterial HGT are known: via the uptake of

DNA from the environment, conjugation via the direct transfer of

DNA from a bacterium to the conjugated ones, and transduction

where transferred DNA is packed in bacteriophages. The HGT

of ARGs serves effectively in the evolution of bacterial cells due

to the plasticity of bacterial genomes and occurrence of selection

pressure, which promote the competence of bacterial cells with

potential for adaptability (Prudhomme et al., 2006; Peterson and

Kaur, 2018). Ecological settings that mediate the occurrence of

HGT include sewage, hospital effluents, and aquaculture, where the

density of bacteria and mobile genetic elements (MGEs) is high

(Resch et al., 2005; Modi et al., 2013; Stanczak-Mrozek et al., 2015;

Von Wintersdorff et al., 2016).
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In the present study, we have studied the phageome of the soil

rhizosphere ofM. oleifera in terms of the genes encoding CAZymes

and other KEGG enzymes. We also studied the possibility of

soil phageome to transduce ARGs from one bacterial taxon to a

genetically related taxon, a process called horizontal gene transfer

(HGT), and investigated its possibly accompanied risks to humans

and the environment.

2. Materials and methods

2.1. Soil sample collection, DNA isolation,
and sequencing

Soil samples at coordinates 21◦1′17.8′′N 39◦31′26.4′′E near

Jeddah, Saudi Arabia (Al-Eisawi and Al-Ruzayza, 2015), were

collected from the rhizosphere region of three single-grown,

similar-in-size M. oleifera trees in addition to three samples of the

surrounding bulk soil (≥10m apart from the trees), as previously

described (Hurt et al., 2001). Then, DNA was isolated, and an

amount of 30 µl of each DNA sample (10 ng/µl) was shipped

to Novogene Co. (Singapore) for whole-metagenomic sequencing

using the Illumina HiSeq 2500 platform. Then, raw data were

deposited in the European Nucleotide Archive (ENA) (https://

www.ebi.ac.uk/ena/browser/), with accession nos. ERR10100770-

74 and ERR10100781.

2.2. Bioinformatics and functional
annotation of viruses

A library was prepared using the NEBNext R© UltraTM DNA

Library Prep kit, while steps of dataset assembly and layers of

quality control were performed as described (Karlsson et al.,

2012; Mende et al., 2012; Oh et al., 2014). Library preparation

entails DNA fragmentation, end repair 5‘ phosphorylation, and dA-

tailing, followed by adaptor ligation, U excision, PCR enrichment,

and DNA clean-up. Clean reads were assembled by Novogene

Co., while mix less abundant unassembled reads of all samples

to be resembles and recovered NOVO_MIX scaffolds of which

scaftigs were generated as described (Mende et al., 2012; Nielsen

et al., 2014). Assembled ORFs/NOVO_MIX queries were mapped

against Soap 2.21 (default version), and genes were predicted

and dereplicated by MetaGeneMark (Nielsen et al., 2014) and

Cluster Database at High Identity with Tolerance (CD-HIT) (Li and

Godzik, 2006; Fu et al., 2012), respectively. Non-redundant gene

catalogs (nrGCs) were generated by greedy pairwise comparison

(Li et al., 2014) and annotated by MEGAN (Huson et al.,

2007). Then, functional abundance was generated using Diamond

(Buchfink et al., 2015), and deduced amino acid sequences were

mapped to the eggNOG database (version 4.0) (Huson et al.,

2011, 2016; Powell et al., 2014; Buchfink et al., 2015; Huerta-

Cepas et al., 2017) against the CAZy database (version 2014.11.25)

(Lombard et al., 2014) to detect and assign CAZymes to their

classes/families and draw pathways using the KEGG database

(https://www.genome.jp/kegg/pathway.html). In terms of other

KEGG enzymes, the KEGG Orthology (KO) database was used to

detect molecular functions, while the KEGG PATHWAY database

was used to map pathways at three KEGG levels (1, 2, and 3),

and the KEGG ENZYME (EC or enzyme commission) database

was used to functionally annotate ORFs/NOVO_MIX queries

(Karlsson et al., 2012, 2013; Li et al., 2014). ARGs and gene

queries were further mapped against the Comprehensive Antibiotic

Resistance Database (CARD, https://card.mcmaster.ca/ontology/)

(e-value ≤1e−5) (Martínez et al., 2015), and gene abundance was

estimated (Yang et al., 2013; Forsberg et al., 2014). ARGs were

manually categorized into antimicrobial resistance (AMR) families

and their resistance mechanisms, as described (Liu and Pop, 2009).

Detected phage ARGs were searched for their bacterial hosts in the

soil microbiome ofM. oleifera in order to elaborate on the effects of

bacterial transduction and subsequent biological events.

3. Results

The present study focused on the detection of viral genes

that contribute to the functions assigned to the rhizospheric

microbiome of M. oleifera in three categories, namely,

genes encoding CAZymes, genes encoding other KEGG

enzymes, and antibiotic resistance genes (ARGs). First, the

abundance of viral genes was detected and proven to be

higher in plant rhizosphere soil than in bulk soil (Figure 1,

Supplementary Tables S1, S2). The number of overall detected

viruses was 18, mostly belonging to tailed bacteriophages

of class Caudoviricetes (12) followed by Caulimoviridae (3),

Geminiviridae (1), Potyviridae (1), and one unclassified family

(Figure 2, Supplementary Table S2). Of these, 13 viruses were

bacteriophages of bacterial genera Pseudomonas (2), Streptomyces

(7),Mycobacterium (2), Rhodococcus (1), and Bacillus (1) (Figure 1,

Supplementary Table S2). It should be noted that Pseudomonas

phage POR1 was further classified as a double-stranded DNA

Siphovirus Dyson et al. (2016). The characterized viral CAZymes

comprise four glycoside hydrolase (GH) family groups: GH43

(group 1), GH43/GH51/GH54/GH62/GH2/GH3 (group 2),

GH43/GH30/GH39/GH51/GH52/GH54/GH1/GH116/GH120

(group 3), and GH23 (group 4) (Figure 3, Supplementary Table S3).

Hits of subject IDs in the National Center for Biotechnology

Information (NCBI) along with the complete description of

CAZymes and their CAZY families in the recovered four groups

are provided in Supplementary Table S4. The number and IDs

of gene queries referring to all rhizosphere CAZymes across the

four different kingdoms are given in Supplementary Table S5,

while those for the four GH groups are given in Figure 3,

Supplementary Tables S6–S7. The abundance of genes encoding all

CAZymes in the two soil types is listed in Supplementary Table S8.

The data provided in Supplementary Table S9 and described in

Figure 4 indicate that the abundance of the seven characterized

CAZymes was much higher in the rhizosphere microbiome than in

the bulk soil microbiome.

Out of the 18 viruses of M. oleifera microbiomes, four

viruses (Mycobacterium virus Babsiella, Streptomyces phage Lorelei,

Mycobacterium virus Gaia, and Streptomyces phage Scap1) were

proven to harbor genes encoding seven characterized CAZymes

of CAZy GH class, while two viruses (Rhodococcus virus Pepy6

and Mycobacterium virus Gaia) had uncharacterized CAZymes

of EC 3.2.1.- (Figure 4, Supplementary Table S3). Out of the

seven characterized CAZymes, three CAZymes, namely, alpha-

L-arabinofuranosidase (EC 3.2.1.55) of Mycobacterium virus
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FIGURE 1

Abundance of viral non-redundant genes in soil, e.g., bulk (S) and rhizosphere (R), microbiomes of Moringa oleifera. For more taxonomic details, see

Supplementary Table S2.

Frontiers inMicrobiology 04 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1166148
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ashy et al. 10.3389/fmicb.2023.1166148

FIGURE 2

List of phages at family/genus/species levels in soil microbiomes of Moringa oleifera.

Babsiella, beta-xylosidase (EC 3.2.1.37) of Streptomyces phage

Lorelei, and chitinase (EC 3.2.1.14) of Streptomyces phage Scap1,

exist in the KEGG pathway “Amino sugar and nucleotide sugar

metabolism.” The first CAZyme belongs to GH group 2, while

the second belongs to group 3 and the third belongs to GH

group 4. The four other characterized CAZymes do not participate

in KEGG pathways. Three of them, namely, endo-arabinanase

(EC 3.2.1.99), galactan 1,3-beta-galactosidase (EC 3.2.1.145), and

endo-beta-1,4-xylanase (EC 3.2.1.8), exist in Mycobacterium virus

Gaia, while the fourth, CAZyme lysozyme type G (EC 3.2.1.17),

exists in Streptomyces phage Scap1. The first three CAZymes

belong to GH group 1, while the fourth belongs to GH group 4

(Supplementary Table S7).

In terms of other functioning enzymes in the virome of

M. oleifera microbiomes, the results of the KEGG database

indicated the participation of six viruses in the biosynthesis

of seven enzymes (Supplementary Table S10). These viruses

belong to tailed bacteriophages of class Caudoviricetes. The

seven KEGG enzymes participate in six pathways, namely,

“Glyoxylate and dicarboxylate metabolism,” “Terpenoid backbone

biosynthesis,” “Protein export,” “Purine metabolism,” “Pyrimidine

metabolism,” and “Mismatch repair.” KEGG IDs of these pathways

are map00630, map00900, map03060, map00230, map00240,

and map03430, respectively. Enzymes of the six pathways

include glyoxylate reductase (EC 1.1.1.26) of Rhodococcus virus

Pepy6 for pathway with ID map00630, isopentenyl-diphosphate

delta isomerase (EC 5.3.3.2) of Streptomyces phage DrGrey

for pathway with ID map00900, signal peptidase II (EC

3.4.23.36) of Mycobacterium virus Babsiella for pathway with ID

map03060, ribonucleoside-triphosphate reductase (EC 1.17.4.2),

ribonucleoside-diphosphate reductase subunit M1 (EC 1.17.4.1)

of Pseudomonas phage PPpW-3 for pathways with IDs map00230

and map00240, DNA adenine methylase (EC 2.1.1.72) of

Mycobacterium virus Gaia for pathway with ID map03430, and

dUTP pyrophosphatase (EC 3.6.1.23) of Pseudomonas phage

POR1 for pathway with ID map00240 (Supplementary Table S10).

The full description of query IDs and their hits in the NCBI

along with their participation in KEGG pathways are listed in

Supplementary Table S11. The number of gene queries for all

KEGG enzymes in the rhizosphere soil microbiome of M. oleifera

is listed in Supplementary Table S12, while the number of viral

gene queries for the seven KEGG enzymes across soil types is

shown in Figure 5, Supplementary Table S13. The abundance of

genes encoding all KEGG enzymes in microbiomes of the two soil

types is given in Supplementary Table S14. The data provided in

Supplementary Table S15 and described in Figure 6 indicate that

the abundance of the seven CAZymes was higher in the rhizosphere

microbiome than in the bulk soil microbiome. Overall, three phages

harbor genes encoding members of CAZymes and other KEGG

enzymes. They are Mycobacterium virus Babsiella, Mycobacterium

virus Gaia, and Rhodococcus virus Pepy6 (Supplementary Tables S3,

S10).

The results of bacterial abundance in the rhizospheric soil

microbiome of M. oleifera and that of the surrounding bulk

soil are given in Supplementary Table S16. The results for the

five phage-associated bacterial genera, namely, Pseudomonas,

Streptomyces,Mycobacterium, Rhodococcus, and Bacillus, indicated

higher abundance of these bacterial genera in the rhizosphere soil

than in bulk soil (Figure 7, Supplementary Table S17). ARGs that

are encoded mostly by bacterial genes in soil microbiomes

of M. oleifera are described in Supplementary Table S18.

The number of gene queries of these ARGs is listed in

Supplementary Table S19. The results showed that 19 ARGs

were mostly encoded by phages within the five bacterial genera

(Figure 8, Supplementary Table S20). The top five ARGs in terms

of the number of gene queries were studied further. They exist in

phages of three of the five bacterial genera, namely, Pseudomonas,

Streptomyces, andMycobacterium. These five ARGs are soxR, oleC,

parY mutant, MuxB, and arr-1. The ARGs soxR and MuxB are

encoded within Pseudomonas aeruginosa mostly by Pseudomonas

phages PPpW-3 and/or POR1, the ARGs oleC and parY mutant

are, respectively, encoded within Streptomyces antibioticus and S.

rishiriensis mostly by Streptomyces phages Immanuel3, DrGrey,

Lorelei, Mildred21 and/or Scap1, while the ARG arr-1 is encoded
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FIGURE 3

Query number of viral genes encoding CAZymes of CAZy glycoside hydrolase (GH) class along with their groups in soil microbiomes of Moringa

oleifera across soil types. Group 1 = GH43, Group 2 = GH43/GH51/GH54/GH62/GH2/GH3, Group 3 = GH43/GH30/GH39/GH51/GH52/

GH54/GH1/GH116/GH120, and Group 4 = GH23. For more details, see Supplementary Table S7.

within Mycobacterium smegmatis mostly by Mycobacterium virus

Babsiella, Gaia, Dori, Edugator, Journey13, Kratio, Nerujay, Phasih

and/or Squirty (Supplementary Table S2). These ARGs were highly

abundant in the rhizosphere soil of M. oleifera compared with

those in bulk soil (Figure 9, Supplementary Tables S21, S22). The

description of the five ARGs along with their targeted antibiotics,

resistance mechanisms, and antimicrobial resistance (AMR) gene

families are given in Supplementary Table S23.

4. Discussion

Viruses are known to infect the three domains of life,

namely, bacteria, archaea, and eukarya. The indirect influence

of phages includes interaction with their bacterial hosts

in order to promote a certain action, e.g., release certain

compounds, which subsequently affects the ultimate Eukarya host

(Pratama et al., 2020). Furthermore, rhizospheric bacteriophages

have a great influence on soil microbial community (Emerson,

2019) as they regulate their structure, function, and diversity by

lysing microbial cells and reprogramming metabolism processes

via the expression of virus-encoded auxiliary metabolic genes

(AMGs) (Braga et al., 2020; Luo et al., 2022). The latter actions can

be beneficial or harmful to both soil microbes and intact plants

based on the entity of the genes packaged in the virus.

The presence of non-viral genes in bacteriophages, likely

occurring accidentally, is an intermediate step toward the

horizontal gene transfer (HGT) and the spreading of one or

more genes within a microbiome of a given host (Berglund,

2015). Horizontal transfer of bacterial genes via transformation,

conjugation, and transduction to their analogs in the human

pathogenic strains was speculated to be possible (Andersson and

Hughes, 2010; Shami et al., 2022). The transduction of ARGs

among bacteria via bacteriophages was almost neglected although
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FIGURE 4

Abundance of viral genes encoding GH CAZyme groups in soil, e.g.,

bulk (S) and rhizosphere (R), microbiomes of Moringa oleifera.

Orange box = CAZyme group 1, green box = CAZyme group 2, pink

box = CAZyme group 3, blue box = CAZyme group 4. EC 3.2.1.99 =

arabinanase, EC 3.2.1.145 = galactan 1,3-beta-galactosidase, EC

3.2.1.8 = endo-beta-1,4-xylanase, EC 3.2.1.55 = alpha-L-

arabinofuranosidase, EC 3.2.1.37 = beta-xylosidase, EC 3.2.1.17 =

lysozyme type G, and EC 3.2.1.14 = chitinase. For more details, see

Supplementary Table S9.

phages are estimated to be the most abundant biological entities

on Earth (Dion et al., 2020). The common transduction process is

of a generalized type (Chen and Novick, 2009; Fillol-Salom et al.,

2019), thus, occurred through accidental packaging (Wang et al.,

2018). The latter action occurs by randomly incorporating bacterial

genome fragments into phage capsids followed by subsequent

transfer to genomes of other bacterial hosts. Thus, HGT among

genetically related bacteria likely results in the exchange of genetic

FIGURE 5

Query number of viral genes encoding enzymes generated from

KEGG analysis in soil, e.g., bulk (S) and rhizosphere (R), microbiomes

of Moringa oleifera. EC 1.1.1.26 = glyoxylate reductase, EC 5.3.3.2 =

isopentenyl-diphosphate delta isomerase, EC 3.4.23.36 = signal

peptidase II, EC 1.17.4.2 = ribonucleoside-triphosphate reductase

(thioredoxin), EC 2.1.1.72 = DNA adenine methylase, EC 3.6.1.23 =

dUTP pyrophosphatase, and EC 1.17.4.1 = ribonucleoside-

diphosphate reductase alpha/beta chain. For more details, see

Supplementary Table S13.

materials, such as ARGs, among different bacterial populations and

their phages (Modi et al., 2013; Brown-Jaque et al., 2015).

4.1. CAZymes encoded by rhizospheric
phageome

Horizontal gene transfer (HGT) can be beneficial in case of

genes encoding CAZymes or other KEGG pathway enzymes, while

raise concerns to human health in case of ARGs. Rhizosphere is

known to receive large amounts of plant-assimilated carbon (C)

mostly in the form of glucose through a functionally dynamic

process called rhizodeposition (Hamonts et al., 2018; Pérez-

Izquierdo et al., 2019). In turn, soil mineralization referring to

C transformation is a process that involves microbial CAZymes

(Pett-Ridge et al., 2021). In the present study, a number of

viral genes were shown to promote the biosynthesis of CAZymes

and metabolites in bacteria (Figures 4, 6, Supplementary Tables S3,

S10) with an indirect influence on the plant host. Aligning

with the results of the present study, CAZymes of the GH23

family were previously proven to be encoded by bacteria and by

a bacteriophage (https://www.cazypedia.org/index.php/Glycoside_

Hydrolase_Family_23) (Blackburn and Clarke, 2001).

Carbohydrate-Active enZymes belong to CAZy classes that

are subclassified into families with a range of discrete modules

acting on building and/or degrading complex carbohydrates
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FIGURE 6

Abundance of viral genes encoding enzymes generated from KEGG

analysis in soil, e.g., bulk (S) and rhizosphere (R), microbiomes of

Moringa oleifera. EC 1.1.1.26 = glyoxylate reductase, EC 5.3.3.2 =

isopentenyl-diphosphate delta isomerase, EC 3.4.23.36 = signal

peptidase II, EC 1.17.4.2 = ribonucleoside-triphosphate reductase

(thioredoxin), EC 2.1.1.72 = DNA adenine methylase, EC 3.6.1.23 =

dUTP pyrophosphatase, and EC 1.17.4.1 = ribonucleoside-

diphosphate reductase alpha/beta chain. For more details, see

Supplementary Table S15.

(Cantarel et al., 2009). CAZy classes include class glycoside

hydrolases (GHs) that mostly act on the hydrolysis and/or

rearrangement of glycosidic bonds (Lombard et al., 2014). The

most abundant GH CAZy families in the rhizosphere virome of

M. oleifera are GH43 with nine CAZymes and GH23 with two

CAZymes (Supplementary Tables S3, S4, S7). Based on the family

composition of these 11 CAZymes, they were separated into four

GH CAZyme groups (1, 2, 3, and 4). Three of these GH groups

involve CAZymes from the GH43 family and a few other GH

families, while the fourth group involves the GH23 family (Figure 3,

FIGURE 7

Abundance of genes in bacteria that host phages of soil, e.g., bulk

(S) and rhizosphere (R), microbiomes of Moringa oleifera. For more

details, see Supplementary Table S17.

Supplementary Table S7). CAZymes of the GH43 CAZy family are

among the largest GH families (Mewis et al., 2016) that act on

debranching and degradation of hemicellulose (e.g., arabinoxylans)

and pectin polymers albeit displaying a hitherto underestimated

variety of discrete specificity features as its CAZymes might require

more than one substrate for their optimal activity (Romeis et al.,

1993). Members of the GH23 family are lytic transglycosylases

or peptidoglycan lyases that require the peptide side chains in

peptidoglycan for their activity, while are inactive against chitin

(Romeis et al., 1993). In terms of its member lysozyme type G,

earlier reports indicated a typical inverting mechanism of action

(Helland et al., 2009).

Four of the GH43 CAZymes (with EC 3.2.1.-) were not further

studied as they were not fully characterized. Three of the seven,

fully characterized CAZymes, namely alpha-L-arabinofuranosidase
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FIGURE 8

Query numbers of antibiotic resistance genes (ARGs) in the

phageome of soil, e.g., bulk (S) and rhizosphere (R), microbiomes of

Moringa oleifera. Columns in red refer to highly abundant ARGs to

be utilized further. For more details, see Supplementary Table S20.

(EC 3.2.1.55) of Mycobacterium virus Babsiella, beta-xylosidase

(EC 3.2.1.37) of Streptomyces phage Lorelei, and chitinase (EC

3.2.1.14) of Streptomyces phage Scap1, were shown to exist in the

KEGG pathway “Amino sugar and nucleotide sugar metabolism”

with ID map00520 (Supplementary Figure S1). The first CAZyme

belongs to GH group 2 and participates in the conversion of

arabinan to L-arabinose that is eventually converted into two UDP

sugars (UDP-L-arabinose and UDP-D-xylose), while the second

CAZyme belongs to group 3 and participates in the conversion of

the latter metabolite into X-xylose. The combined action of these

two CAZymes mediates the passage to the pathway “Pentose and

glucuronate interconversion” (Supplementary Figure S1). Another

CAZyme of Mycobacterium virus Gaia namely endo-arabinanase

(EC 3.2.1.99) that belongs to GH group 1 (Supplementary Table S7)

also participates in the degradation of arabinan, which mediates

the action of alpha-L-arabinofuranosidase (EC 3.2.1.55) (Shi et al.,

2014). The resulted L-arabinose residues accumulate in pectins

of the plant cell wall (Sakamoto et al., 2003). Thus, the two

Mycobacterium phages act synergistically via the action of the two

CAZymes with ECs 3.2.1.55 and 3.2.1.99. The third CAZyme of the

KEGG pathway “Amino sugar and nucleotide sugar metabolism”

namely chitinase (EC 3.2.1.14) participates in the conversion

of chitin into N-acetylglucosamine (GlcNAc). This metabolite

is an amide derivative of glucose and a part of a biopolymer

of the bacterial cell wall, which cross-links with MurNAc to

recover the important layered cell wall structure of peptidoglycan.

GlcNAc is also a main component of the fungi cell wall (Kamel

et al., 1991). The GH group 1 CAZymes, such as galactan 1,3-

beta-galactosidase (EC 3.2.1.145) and endo-beta-1,4-xylanase (EC

3.2.1.8), are encoded by the genes ofMycobacterium virus Gaia. The

first CAZyme belongs to type II arabinogalactans (AGs)-degrading

enzymes (Sakamoto et al., 2011). AG proteins promote several

physiological events in the plant such as cell–cell recognition,

embryogenesis, and programmed cell death (PCD) (Gaspar et al.,

2001). The second CAZyme is responsible for the hydrolysis of

β-1,4 bonds in plant xylan, which is the major component of

hemicellulose of plant cell walls (Zeng et al., 2017). Thus, plant cells

FIGURE 9

Abundance of the selected antibiotic resistance genes (ARGs) in the

phageome of soil, e.g., bulk (S) and rhizosphere (R), microbiomes of

Moringa oleifera. For more details, see Supplementary Table S22.

seem to differentially promote the abundance level of the hosting

bacteriumMycobacterium and its associated phages based on their

requirements. The GH group 4 lysozyme type G (EC 3.2.1.17) of

Streptomyces phage Scap1 is among the three types of lysozymes

that act as antibacterial compounds where they breakdown the

peptidoglycan of bacterial cell walls and therefore induce bacterial

cell lysis (Oliver and Wells, 2015; Nawaz et al., 2022). This viral

action seems to be selective and based on microbe and plant

cell requirements.

4.2. Other rhizospheric KEGG enzymes
encoded by phageome

In terms of other KEGG enzymes encoded by viral genes,

glyoxylate reductase (1.1.1.26) of Rhodococcus virus Pepy6 was

shown to exist in the KEGG pathway “Glyoxylate and dicarboxylate
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metabolism” with ID map00630 (Supplementary Figure S2).

This enzyme participates in the conversion of the reactive

oxygen species (ROS) namely hydrogen peroxide (H2O2) to

oxygen (O2) as an intermediate step toward the conversion of

glycolate to glyoxylate, which is the core step of the pathway

(Supplementary Figure S2). Thus, the virus might help reduce

the level of H2O2 when reached a certain threshold. The latter

reaction can be followed by the biosynthesis of the two important

metabolites glycine and malate (Supplementary Figure S2).

Reactions of the glyoxylate cycle were proven to promote the

permeability of the peroxisome membrane (Kunze and Hartig,

2013). The enzyme also participates in the conversion of hydroxyl-

pyruvate to glycerate that can eventually promote carbon fixation

in plants (Supplementary Figure S2). The enzyme isopentenyl-

diphosphate delta isomerase (EC 5.3.3.2) of Streptomyces

phage DrGrey participates in the KEGG pathway “Terpenoid

backbone biosynthesis” (Supplementary Figure S3). It catalyzes the

conversion of the less-reactive isopentenyl pyrophosphate (IPP)

to the more-reactive electrophile dimethylallyl pyrophosphate

(DMAPP). This reaction is considered a rate-limiting step in

the biosynthesis of isoprenoids through the mevalonate and the

MEP pathways (Supplementary Figure S3). The downstream step

involves the biosynthesis of isoprene, whose emission is positively

correlated with temperature toward protecting plants from heat

stress (Rodrigues et al., 2020). The enzyme signal peptidase II (EC

3.4.23.36) of Mycobacterium virus Babsiella participates in the

KEGG pathway “Protein export” (Supplementary Figure S4). It

catalyzes the release of signal peptides from bacterial membrane

prolipoproteins. This Sec-dependent pathway refers to the active

transport of bacterial proteins across the cell membrane or to the

periplasmic cell compartment (Rusch and Kendall, 2007). These

actions are mediated by signal peptides that are responsible for

targeting the respective proteins by the membrane-bound Sec

translocase (Rusch and Kendall, 2007).

The DNA adenine methylase or Dam (EC 2.1.1.72) of

Pseudomonas phage PPpW-3 is important when bacterial cells

require making mismatch repair. When DNA polymerase III

generates a mismatched base-pair(s) during DNA synthesis, then

the cell can differentiate between the template methylated strand

and the newly synthesized (daughter) unmethylated strand by

the action of Dam (Barras and Marinus, 1989). Then, repair

complex MutS/MutL activates the endonuclease MutH that binds

the hemimethylated site and selectively cleaves the unmethylated

daughter strand to promote the excision of the mismatch portion

of the nascent strand by exonuclease and re-synthesis by DNA

polymerase III (Supplementary Figure S5) (Barras and Marinus,

1989; Løbner-Olesen et al., 2005). In addition, methylation status

by Dam epigenetically manipulates bacterial RNA transcription

(Casadesús and Low, 2006) and was also proven to promote

bacterial cell viability (Julio et al., 2001).

The ribonucleoside-triphosphate reductase (EC 1.17.4.2)

and ribonucleoside-diphosphate reductase alpha/beta chain (EC

1.17.4.1) of Pseudomonas phage PPpW-3 participate in the two

pathways “Purine metabolism” (Supplementary Figure S6) and

“Pyrimidine metabolism” (Supplementary Figure S7). These

enzymes are essential in the conversion of ribonucleotides to

deoxyribonucleotides, e.g., building blocks for DNA replication

(Torrents, 2014). Therefore, these two enzymes affect the

downstream steps of cell division by the balanced supply of

dNTPs, which results in higher mutation rate and genome

instability when the dNTPs rate of production is imbalanced

(Mathews, 2006). To support successful DNA replication, the

enzyme dUTP pyrophosphatase (EC 3.6.1.23) of Pseudomonas

phage POR1 catalyzes the hydrolysis of dUTP to both dUMP

and pyrophosphate to prevent the incorporation of uracil into

DNA during replication (Supplementary Figure S7), thus, save

energy required for proof-reading and repair. In addition, the

incorporation of uracil in DNA strands promotes bacterial cell

death; a case of thymine-less death (Mathews, 2006).

4.3. ARGs of rhizospheric phageome

The top five highly abundant ARGs in the rhizosphere of M.

oleifera were shown to be encoded by the phages of bacterial

genera Pseudomonas, Streptomyces, and Mycobacterium (Figure 9,

Supplementary Table S22). Of which, Pseudomonas is within the

bacterial group namely ESKAPE (Enterococcus, Staphylococcus,

Klebsiella, Acinetobacter, Pseudomonas, and Escherichia) that poses

concerns of resistance to antibiotics in genetically related pathogens

(Boucher et al., 2009). Candidate ARGs of Pseudomonas in the

present study include soxR andMuxB (Figure 9).

Rhizospheric resistomes of naturally growing wild plant

species might contain ARGs with unexplored antibiotic resistance

mechanisms (Berendonk et al., 2015; Obermeier et al., 2021). ARGs

of such soil resistomes might pose a direct threat to human health

due to HGT to human genetically related pathogenic microbes if

bacteria harboring these ARGs are in direct contact with an edible

plant such as M. oleifera. Based on the results of the present study,

abundant mechanisms of antibiotic resistance in the rhizosphere

of M. oleifera include “antibiotic efflux pump” for ARGs soxR,

OleC, and MuxB, “antibiotic target alteration” for parY mutant,

and “antibiotic inactivation” for arr-1 (Supplementary Table S23).

Antibiotic efflux mechanisms of the soxR gene include AMR

gene families “major facilitator superfamily (MFS),” “ATP-binding

cassette (ABC),” and “resistance-nodulation-cell division (RND),”

while the efflux mechanism of the oleC gene includes ATP-

binding cassette (ABC) and that ofMuxB gene includes resistance-

nodulation-cell division (RND) (Supplementary Table S23).

4.3.1. E	ux pump resistance mechanism in the
phageome of M. oleifera

The efflux pump is an energy-dependent mechanism that

promotes bacterial homeostasis via the expulsion of toxic

substances or antibiotics (Fernández and Hancock, 2012). This

activity reduces the abundance of antibiotics in the cell. This

mechanism is favored by bacterial pathogens to promote survival

during the infectivity period. Thus, this mechanism of expelling

toxins should be faster than host-responsive defense mechanisms

(Koprivnjak and Peschel, 2011). Efflux pump families are made of

five AMR families. The most common is the resistance-nodulation-

division (RND), followed by the ATP-binding cassette (ABC) and

the major facilitator superfamily (MFS) (Piddock, 2006; Poole,

2007; Sun et al., 2014). The RND family of efflux pump mechanism

uses proton motive forces for efflux (Chitsaz and Brown, 2017)
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and is only found in gram-negative bacteria, such as Pseudomonas

with soxR and MuxB genes (Figures 8, 9), whereas the ATP-

binding cassette (ABC) family relies on ATP hydrolysis and can

also be found in gram-positive bacteria (Sun et al., 2014), such as

Streptomyces with oleC gene (Figures 8, 9).

The soxR gene is a transcription factor that regulates bacterial

growth, fitness, and resistance against several antibiotics such

as tetracycline, penam, cephalosporin, and rifamycin antibiotics

(Palma et al., 2005; Li et al., 2017). This gene also promotes several

other efflux pump genes of the RND family (Marchand et al., 2004;

Gu and Imlay, 2011). Two oxidation reactions in a raw take place

upon the exposure of bacteria and its phages to a given antibiotic.

The first reaction involves SoxR protein, while the second involves

another protein namely SoxS. This oxidation system is called the

SoxR/SoxS paradigm (Pomposiello and Demple, 2001; Li et al.,

2017), of which their association promotes the overexpression of

a multidrug efflux machinery namely AcrAB-TolC; a tripartite

transporter that expels intracellular periplasm substrates (White

et al., 1997; Ruiz and Levy, 2014). In the absence of SoxS protein,

SoxR ought to drive a 6-gene regulon that promotes efflux pump in

members of the Proteobacteria, such as Pseudomonas aeruginosa

(Bialek-Davenet et al., 2011; Li et al., 2017). The latter approach

seems to be the ideal efflux mechanism promoted by the phageome

of P. aeruginosa in the present study. SoxR also facilitates the

induction of the major facilitator superfamily (MFS) efflux pump

genes (Saidijam et al., 2006; Dulyayangkul et al., 2016). The

MFS system contains transport proteins or facilitators that force

unwanted solutes to move across membranes (Marger and Saier,

1993). Thus, we expect that the viral soxR gene can pose a

major risk to human health, through the driving expression of

the 6-gene regulon in Pseudomonas aeruginosa, if this gene is

horizontally transferred to the human gut microbiome. In terms

of the ARG muxB, it was reported that it encodes a component

of the MuxABC-OpmB efflux pump against several antibiotics

including tetracycline and aminocoumarin (Mima et al., 2009).

This pump is the last hitherto detected RND-type multidrug efflux

pump in P. aeruginosa. Unlike other RND-type efflux pumps, the

MuxABC-OpmB pump includes two RND components (MuxB and

MuxC), in addition to one MFP component (MuxA) and one OMP

component (OpmB). Interestingly, the ARG cpxR was reported

to enhance the expression of genes encoding mexAB-oprM efflux

pump, thus, also enhancing resistance against aminocoumarin and

tetracycline antibiotics. The gene encoding CpxR was proven to be

moderately abundant in the rhizospheric phageome of M. oleifera

(Figure 8, Supplementary Table S21).

The ATP-binding cassette (ABC) antibiotic efflux pump of

Streptomyces viral gene oleC is made of membrane and membrane-

associated (e.g., AAA ATPases) proteins that expel antibiotics

out of the bacterial cell membranes. OleC transporter protein

of Streptomyces antibioticus is made of two proteins (Olano

et al., 1996). The first, namely OleC, can bind/hydrolyze ATP,

while the second, namely OleC5, is a hydrophobic membrane

protein. Through the ABC transporter system of the viral oleC

gene, the antibiotic oleandomycin is effluxed as a self-resistance

mechanism against this antibiotic (Ma Rodriguez et al., 1993).More

importantly, bacterial genus Streptomyces was reported to harbor

ARGs that encode the majority of the clinical antibiotics (e.g.,

neomycin, cypemycin, grisemycin, and chloramphenicol), and to

act as a factory of newly emerged antibiotics. However, invasive

infection with this bacteria in clinical practice is fortunately rare

(Kapadia et al., 2007). The present study speculates that the portion

of the ARGs of genus Streptomyces might exist in its phages for

storage or as an intermediate step toward the dynamic transfer to

other genetically related bacteria.

4.3.2. Antibiotic target alteration and inactivation
resistance mechanisms in the phageome of M.
oleifera

In terms of the antibiotic target alteration mechanism of

parY mutant, prior studies indicated that bacterial topoisomerase

IV (topo IV) or type II topoisomerase is made of ParX and

ParY subunits. The first subunit contains the catalytic center

for DNA cleavage/rejoining, while the second contains the

catalytic center for ATP hydrolysis. In Streptomyces coelicolor,

the topoisomerase enzyme confers aminocoumarin antibiotic

resistance. The mode of action of this antibiotic is inhibiting

the drug target ParY of type II topoisomerase, such as gyrase

(Maxwell, 1997). Streptomyces species have the ability to resist

this antibiotic by de novo synthesizing a modified B subunit of

gyrase, namely aminocoumarin-resistant gyrase B. Thus, when

phages harboring this version of the parY gene transduce bacteria,

it can inhibit the detrimental effects of aminocoumarin by altering

the structure of gyrase B (Schmutz et al., 2004). In addition,

there is another version of the resistance gene, namely parYR that

participates in encoding an enzyme that is basically not a target for

aminocoumarin antibiotics.

Among bacterial resistomes, a new nomenclature, such as

“enzystome” (Swaminath et al., 2020), was given to the large

battery of bacterial enzymes and their mutants that implement

antibiotic resistance mechanisms (Egorov et al., 2018). Rifampin

ADP-ribosyltransferase (Arr) is among enzystome serving in

antibiotic inactivation due to the action of the encoding gene arr-

1 of Mycobacterium smegmatis. Rifampin ADP-ribosyltransferase

acts in catalyzing the ADP-ribosylation of rifampicin and other

rifamycins, thus, inactivating them (Figure 10) (Morgado et al.,

2021). Rifampicin mainly acts in binding the B subunit of the RNA

polymerase (e.g., RpoB) to inhibit the transcription initiation of

bacterial genes and to facilitate the direct blocking of the elongating

RNA (Albano et al., 2019). A mutant version of the enzyme Arr

was first emerged as a contributor to the resistance mechanism

of “antibiotic target alteration,” as explained earlier for the parY

gene. However, “antibiotic inactivation” or enzymatic antibiotic

modification, such as ADP-ribosylation, is a resistance mechanism

that modifies the structure of the antibiotic, not its target in

the bacteria. Antibiotic inactivation further emerged as another

resistance mechanism contributed by this enzyme. In terms of the

ARG namely RpoB, inactivation of rifampicin by modifying its

binding affinity so that it cannot bind bacterial RNA polymerase

(Figure 10). This bacterial response is mediated by the enzymatic

inactivation of the antibiotic by hydrolysis or by the formation of

inactive forms of the antibiotic (Davies, 1994) as well as by the

transfer of a chemical group, such as acetyl, phosphoryl, and adenyl,
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FIGURE 10

Influence of viral parY and arr-1 genes in contributing antibiotic resistance in genus Streptomyces in the rhizospheric microbiome of M. oleifera via

the two resistance mechanisms namely “antibiotic target alteration” and “antibiotic inactivation.” parY mutated gene acts against aminocoumarin,

while arr-1 gene acts against rifampicin.

to the antibiotic by transferases (Reygaert, 2018). Acetylation is

an effective approach against aminoglycosides, chloramphenicol,

streptogramins, and fluoroquinolones, while phosphorylation

and adenylation are effective against aminoglycosides (Blair

et al., 2015). It was anticipated that the faster the inactivation

process of the antibiotic upon entering the bacterial cell, the

higher the chance for the bacteria to survive. As the arr-1

gene originally exists in the bacterial chromosome, thus, this

gene cannot be incorporated into phages except by accidental

packaging (Wang et al., 2018); a phenomenon that might

lessen the diversity of soil resistome and unify its bacterial

genetic constituent.

In general, we support previous reports indicating that the

soil bacteriome uses phageome in disseminating ARGs (Balcázar,

2018), and that phageome can promote the emergence of antibiotic-

resistant pathogenic bacteria in the human gut via unintended

horizontal transfer via this or other mobile genetic elements

(MGEs) (Chen et al., 2017, 2019; Khan et al., 2018). Newly emerged

ARGs can be the result of gene mutation or exchanges of MGEs

between soil and clinical gut resistomes (Cheng et al., 2012;

Forsberg et al., 2014). As indicated earlier, some reports support

the occurrence of ARGs in phages due to accidental packaging

prior to transduction (Wang et al., 2018). Examples include

ARGs encoding the antibiotics lactamase (Brown-Jaque et al.,

2015), quinolone (Colomer-Lluch et al., 2014), and vancomycin

(Lekunberri et al., 2017) that were discretely detected in viral

DNA (Moon et al., 2020). Furthermore, virome analyses, via

whole-metagenomic shotgun sequencing, in several environments,

such as oceans, freshwater, and clinical samples, indicated the

occurrence of a large number of novel ARGs (Subirats et al.,

2016). Phage-associated ARGs exist in clinical phageome due to

the heavy exposure of bacteria and their phages to antibiotics

(Colomer-Lluch et al., 2011; Brown-Jaque et al., 2015), thus,

it is likely that ARGs within bacteria are also carried by

phages in nature. Modi et al. (2013) proved that phages can

further mediate ARG transduction between genetically related

bacterial cells.

In conclusion, the present study provides information on

the rhizospheric phageome signature of the wild plant M.

oleifera indicating metabolic benefits to both bacteria and its

interacting plant on the one hand, and the hazardous effects of

disseminating soil antibiotic resistance genes (ARGs) in human

pathogens or clinical isolates on the other hand. We recommend

studying soil phageomes of other wild plants and those of soil

compartments other than the rhizosphere in order to reach a

better conclusion on the influence of phageomes in editing soil

microbiomes and the consequent cross-talking pattern with the

intact plant.
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