207 research outputs found

    Chiari’s Network as a Cause of Fetal and Neonatal Pathology

    Get PDF
    Chiari’s network is a remnant of the eustachian valve located in the right atrium. Incomplete involution of the fetal sinus venosus valves results in “redundant” Chiari’s network, which may compromise cardiovascular function. This report describes a case with the novel finding of prenatal compromise due to redundant Chiari’s network and an uncommon case with significant postnatal symptoms. In both cases, the symptoms (fetal hydrops and postnatal cyanosis) resolved spontaneously. The variety of cardiovascular pathologies described in the literature is believed to be associated with persistence of a Chiari network. Knowledge about this not always harmless structure is important for perinatologists, pediatricians, and pediatric cardiologists alike. The clinical importance of this rare pathology is that prenatal counseling may anticipate a generally positive outcome and that surgical intervention generally should be avoided

    Observation of Large Missing-Momentum \u3cb\u3e(e, e\u27 p)\u3c/b\u3e Cross-Section Scaling and the Onset of Correlated-Pair Dominance in Nuclei

    Get PDF
    We report the measurement of B scaling in (e,e′p) cross-section ratios off nuclei relative to deuterium at large missing momentum of 350 ≤ Pmiss ≤ 600 MeV/c. The observed scaling extends over a kinematic range of 0.7 ≤ B ≤ 1.8, which is significantly wider than 1.4 ≤ B ≤ 1.8 previously observed for inclusive (e,e′) cross-section ratios. The B-integrated cross-section ratios become constant (i.e., scale) beginning at pmiss ≈ kF, the nuclear Fermi momentum. Comparing with theoretical calculations we find good agreement with generalized contact formalism calculations for high missing momentum (\u3e375 MeV /c), suggesting the observed scaling results from interacting with nucleons in short-range correlated (SRC) pairs. For low missing momenta, mean-field calculations show good agreement with the data for pmiss \u3c kF, and suggest a potential non-negligible contribution to the measured cross-section ratios from scattering off single, uncorrelated, nucleons up to pmiss ≈ 350 MeV /c. Therefore, SRCs become dominant in nuclei at pmiss ≈ 350 MeV /c, well above the nuclear Fermi Surface of kF ≈ 250 MeV/c

    MicroRNA-223 coordinates cholesterol homeostasis

    Get PDF
    Results from this study represent a breakthrough in our understanding of posttranscriptional control of cholesterol metabolism and how microRNAs (miRNAs) are at the heart of cholesterol regulatory circuitry and homeostasis. Although cells are adept at maintaining proper cholesterol levels, it was unknown how cells posttranscriptionally coordinate cholesterol uptake, efflux, and synthesis. MicroRNA-223 (miR-223) transcription and expression are maintained by cholesterol, and, as a feedback network, miR-223 inhibits cholesterol biosynthesis and uptake and increases cholesterol efflux. This study clearly demonstrates the extensive role that miRNAs play in coordinating metabolic adaptation to disease and general homeostasis. This work highlights a unique regulatory control point for cholesterol homeostasis and illustrates how important the study of miRNAs is to the greater understanding of dyslipidemia and cardiovascular disease

    Carcinogenicity of cobalt, antimony compounds, and weapons-grade tungsten alloy

    Get PDF
    The complete evaluation of the carcinogenicity of cobalt, antimony compounds, and weapons-grade tungsten alloy will be published in Volume 131 of the IARC Monographs.[Excerpt] In March, 2022, a Working Group of 31 scientists from 13 countries met remotely at the invitation of the International Agency for Research on Cancer (IARC) to finalise their evaluation of the carcinogenicity of nine agents: cobalt metal (without tungsten carbide or other metal alloys), soluble cobalt(II) salts, cobalt(II) oxide, cobalt(II,III) oxide, cobalt(II) sulfide, other cobalt(II) compounds, trivalent antimony, pentavalent antimony, and weapons-grade tungsten (with nickel and cobalt) alloy. For cobalt metal and the cobalt compounds, particles of all sizes were included in the evaluation. These assessments will be published in Volume 131 of the IARC Monographs.1 Cobalt metal and soluble cobalt(II) salts were classified as “probably carcinogenic to humans” (Group 2A) based on “sufficient” evidence for cancer in experimental animals and “strong” mechanistic evidence in human primary cells. Cobalt(II) oxide and weapons-grade tungsten alloy were classified as “possibly carcinogenic to humans” (Group 2B) based on “sufficient” evidence in experimental animals. Trivalent antimony was classified as “probably carcinogenic to humans” (Group 2A), based on “limited” evidence for cancer in humans, “sufficient” evidence for cancer in experimental animals, and “strong” mechanistic evidence in human primary cells and in experimental systems. Cobalt(II,III) oxide, cobalt(II) sulfide, other cobalt(II) compounds, and pentavalent antimony were each evaluated as “not classifiable as to its carcinogenicity to humans” (Group 3).[...

    Transforming growth factor β receptor 1 is a new candidate prognostic biomarker after acute myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prediction of left ventricular (LV) remodeling after acute myocardial infarction (MI) is clinically important and would benefit from the discovery of new biomarkers.</p> <p>Methods</p> <p>Blood samples were obtained upon admission in patients with acute ST-elevation MI who underwent primary percutaneous coronary intervention. Messenger RNA was extracted from whole blood cells. LV function was evaluated by echocardiography at 4-months.</p> <p>Results</p> <p>In a test cohort of 32 MI patients, integrated analysis of microarrays with a network of protein-protein interactions identified subgroups of genes which predicted LV dysfunction (ejection fraction ≤ 40%) with areas under the receiver operating characteristic curve (AUC) above 0.80. Candidate genes included transforming growth factor beta receptor 1 (TGFBR1). In a validation cohort of 115 MI patients, TGBFR1 was up-regulated in patients with LV dysfunction (P < 0.001) and was associated with LV function at 4-months (P = 0.003). TGFBR1 predicted LV function with an AUC of 0.72, while peak levels of troponin T (TnT) provided an AUC of 0.64. Adding TGFBR1 to the prediction of TnT resulted in a net reclassification index of 8.2%. When added to a mixed clinical model including age, gender and time to reperfusion, TGFBR1 reclassified 17.7% of misclassified patients. TGFB1, the ligand of TGFBR1, was also up-regulated in patients with LV dysfunction (P = 0.004), was associated with LV function (P = 0.006), and provided an AUC of 0.66. In the rat MI model induced by permanent coronary ligation, the TGFB1-TGFBR1 axis was activated in the heart and correlated with the extent of remodeling at 2 months.</p> <p>Conclusions</p> <p>We identified TGFBR1 as a new candidate prognostic biomarker after acute MI.</p

    Time since Onset of Disease and Individual Clinical Markers Associate with Transcriptional Changes in Uncomplicated Dengue

    Get PDF
    Dengue virus (DENV) infection causes viral haemorrhagic fever that is characterized by extensive activation of the immune system. The aim of this study is to investigate the kinetics of the transcriptome signature changes during the course of disease and the association of genes in these signatures with clinical parameters. Sequential whole blood samples from DENV infected patients in Jakarta were profiled using affymetrix microarrays, which were analysed using principal component analysis, limma, gene set analysis, and weighted gene co-expression network analysis. We show that time since onset of disease, but not diagnosis, has a large impact on the blood transcriptome of patients with non-severe dengue. Clinical diagnosis (according to the WHO classification) does not associate with differential gene expression. Network analysis however, indicated that the clinical markers platelet count, fibrinogen, albumin, IV fluid distributed per day and liver enzymes SGOT and SGPT strongly correlate with gene modules that are enriched for genes involved in the immune response. Overall, we see a shift in the transcriptome from immunity and inflammation to repair and recovery during the course of a DENV infection. Time since onset of disease associates with the shift in transcriptome signatures from immunity and inflammation to cell cycle and repair mechanisms in patients with non-severe dengue. The strong association of time with blood transcriptome changes hampers both the discovery as well as the potential application of biomarkers in dengue. However, we identified gene expression modules that associate with key clinica
    corecore