15 research outputs found

    Shipment consolidation with two demand classes: Rationing the dispatch capacity

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.ejor.2018.03.016 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/We analyze the problem faced by a logistics provider that dispatches shipment orders (parcels or larger packages) of two order classes, viz. expedited and regular. Shipment orders arrive according to a compound Poisson process for each class. Upon an arrival, the logistics provider may continue consolidating arriving orders by paying a holding cost. Alternatively, the provider may dispatch, at a fixed cost, a vehicle containing (a portion of) the load consolidated so far. In addition, the provider must specify the composition of each dispatch by allocating (rationing) the volume of the vehicle between expedited and regular shipment orders. We model this problem as a continuous-time Markov Decision Process and minimize the expected discounted total cost. We prove the existence of quantity-based optimal threshold policies under particular conditions. We also structurally analyze the thresholds of these optimal policies. Based on these structural properties, we develop an efficient solution approach for large problem instances which are difficult to solve using the conventional policy-iteration method. For two real-life applications, we show that the quantity-based threshold policies derived using the proposed approach outperform the time policies used in practice.Türkiye Bilimsel ve Teknolojik Araştirma Kurumu [1059B191400567

    Deriving effective vaccine allocation strategies for pandemic influenza: Comparison of an agent-based simulation and a compartmental model

    Get PDF
    Individuals are prioritized based on their risk profiles when allocating limited vaccine stocks during an influenza pandemic. Computationally expensive but realistic agent-based simulations and fast but stylized compartmental models are typically used to derive effective vaccine allocation strategies. A detailed comparison of these two approaches, however, is often omitted. We derive age-specific vaccine allocation strategies to mitigate a pandemic influenza outbreak in Seattle by applying derivative-free optimization to an agent-based simulation and also to a compartmental model. We compare the strategies derived by these two approaches under various infection aggressiveness and vaccine coverage scenarios. We observe that both approaches primarily vaccinate school children, however they may allocate the remaining vaccines in different ways. The vaccine allocation strategies derived by using the agent-based simulation are associated with up to 70% decrease in total cost and 34% reduction in the number of infections compared to the strategies derived by using the compartmental model. Nevertheless, the latter approach may still be competitive for very low and/or very high infection aggressiveness. Our results provide insights about potential differences between the vaccine allocation strategies derived by using agent-based simulations and those derived by using compartmental models.Natural Sciences and Engineering Research Council of Canada [DG 113788, DG 113790

    Simulation-Optimization Framework for Synthesis and Design of Natural Gas Downstream Utilization Networks

    Get PDF
    Many potential diversification and conversion options are available for utilization of natural gas resources, and several design configurations and technology choices exist for conversion of natural gas to value-added products. Therefore, a detailed mathematical model is desirable for selection of optimal configuration and operating mode among the various options available. In this study, we present a simulation-optimization framework for the optimal selection of economic and environmentally sustainable pathways for natural gas downstream utilization networks by optimizing process design and operational decisions. The main processes (e.g., LNG, GTL, and methanol production), along with different design alternatives in terms of flow-sheeting for each main processing unit (namely syngas preparation, liquefaction, N-2 rejection, hydrogen, FT synthesis, methanol synthesis, FT upgrade, and methanol upgrade units), are used for superstructure development. These processes are simulated using ASPEN Plus V7.3 to determine the yields of different processing units under various operating modes. The model has been applied to maximize total profit of the natural gas utilization system with penalties for environmental impact, represented by CO2eq emission obtained using ASPEN Plus for each flowsheet configuration and operating mode options. The performance of the proposed modeling framework is demonstrated using a case study.NSERCQatar Universit

    Deriving effective vaccine allocation strategies for pandemic influenza: Comparison of an agent-based simulation and a compartmental model.

    No full text
    Individuals are prioritized based on their risk profiles when allocating limited vaccine stocks during an influenza pandemic. Computationally expensive but realistic agent-based simulations and fast but stylized compartmental models are typically used to derive effective vaccine allocation strategies. A detailed comparison of these two approaches, however, is often omitted. We derive age-specific vaccine allocation strategies to mitigate a pandemic influenza outbreak in Seattle by applying derivative-free optimization to an agent-based simulation and also to a compartmental model. We compare the strategies derived by these two approaches under various infection aggressiveness and vaccine coverage scenarios. We observe that both approaches primarily vaccinate school children, however they may allocate the remaining vaccines in different ways. The vaccine allocation strategies derived by using the agent-based simulation are associated with up to 70% decrease in total cost and 34% reduction in the number of infections compared to the strategies derived by using the compartmental model. Nevertheless, the latter approach may still be competitive for very low and/or very high infection aggressiveness. Our results provide insights about potential differences between the vaccine allocation strategies derived by using agent-based simulations and those derived by using compartmental models

    Integrating Simulation in Optimal Synthesis and Design of Natural Gas Upstream Processing Networks

    No full text
    A natural gas upstream processing network consists of several main processing units. Many process configurations are available for selection, and the choice of technologies can be vast. There is no single technology or process configuration that is superior in all aspects. Thus, there is a need for a mathematical model that considers different flowsheet configurations and operating mode options and selects optimally among them. In this paper, a comprehensive design and operational mixed integer programming model is presented for superstructure optimization to optimally select the most cost-effective pathway in natural gas upstream processing networks. The key processing units of the considered processing network include stabilization, acid gas removal, dehydration, sulfur recovery, natural gas liquid (NGL) recovery, and NGL fractionation. The developed optimization model considers a superstructure with all available technologies for each processing step as well as mode of operation, such as variations in temperature and pressure which impacts the product yields. These units have been simulated using ASPEN Plus to determine the yields of different units for each design alternative under different operating modes. The bilinear terms in the resulting mixed integer nonlinear programming (MINLP) model are linearized based on either input or output streams, whichever are less in number. The model has been applied to design and operate optimally the natural gas upstream processing network. Two illustrative case studies are presented to show the applicability of the overall framework and formulated models
    corecore