2,883 research outputs found
The interaction between the Moon and the solar wind
We study the interaction between the Moon and the solar wind using a
three-dimensional hybrid plasma solver. The proton fluxes and electromagnetical
fields are presented for typical solar wind conditions with different magnetic
field directions. We find two different wake structures for an interplanetary
magnetic field that is perpendicular to the solar wind flow, and for one that
is parallell to the flow. The wake for intermediate magnetic field directions
will be a mix of these two extreme conditions. Several features are consistent
with a fluid interaction, e.g., the presence of a rarefaction cone, and an
increased magnetic field in the wake. There are however several kinetic
features of the interaction. We find kinks in the magnetic field at the wake
boundary. There are also density and magnetic field variations in the far wake,
maybe from an ion beam instability related to the wake refill. The results are
compared to observations by the WIND spacecraft during a wake crossing. The
model magnetic field and ion velocities are in agreement with the measurements.
The density and the electron temperature in the central wake are not as well
captured by the model, probably from the lack of electron physics in the hybrid
model.Comment: Accepted for publication in Earth, Planets and Spac
Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010
Final report for PV incubator subcontract with Solexel, Inc. The purpose of this project was to develop Solexel's Unique IP, productize it, and transfer it to manufacturing. Silicon constitutes a significant fraction of the total solar cell cost, resulting in an industry-wide drive to lower silicon usage. Solexel's disruptive Solar cell structure got around these challenges and promised superior light trapping, efficiency and mechanical strength, despite being significantly thinner than commercially available cells. Solexel's successful participation in this incubator project became evident as the company is now moving into commercial production and position itself to be competitive for the next Technology Pathway Partnerships (TPP) funding opportunity
Estimation of the volume of distribution of some pharmacologically important compounds from their structural descriptor
Quantitative structure–activity relationship (QSAR) approaches were used to estimate the volume of distribution (Vd) using an artificial neural network (ANN). The data set consisted of the volume of distribution of 129 pharmacologically important compounds, i.e., benzodiazepines, barbiturates, nonsteroidal anti-inflammatory drugs (NSAIDs), tricyclic anti-depressants and some antibiotics, such as betalactams, tetracyclines and quinolones. The descriptors, which were selected by stepwise variable selection methods, were: the Moriguchi octanol–water partition coefficient; the 3D-MoRSE-signal 30, weighted by atomic van der Waals volumes; the fragment-based polar surface area; the d COMMA2 value, weighted by atomic masses; the Geary autocorrelation, weighted by the atomic Sanderson electronegativities; the 3D-MoRSE – signal 02, weighted by atomic masses, and the Geary autocorrelation – lag 5, weighted by the atomic van der Waals volumes. These descriptors were used as inputs for developing multiple linear regressions (MLR) and artificial neural network models as linear and non-linear feature mapping techniques, respectively. The standard errors in the estimation of Vd by the MLR model were: 0.104, 0.103 and 0.076 and for the ANN model: 0.029, 0.087 and 0.082 for the training, internal and external validation test, respectively. The robustness of these models were also evaluated by the leave-5-out cross validation procedure, that gives the statistics Q2 = 0.72 for the MLR model and Q2 = 0.82 for the ANN model. Moreover, the results of the Y-randomization test revealed that there were no chance correlations among the data matrix. In conclusion, the results of this study indicate the applicability of the estimation of the Vd value of drugs from their structural molecular descriptors. Furthermore, the statistics of the developed models indicate the superiority of the ANN over the MLR model
Superconductor-Nanowire Devices from Tunneling to the Multichannel Regime: Zero-Bias Oscillations and Magnetoconductance Crossover
We present transport measurements in superconductor-nanowire devices with a
gated constriction forming a quantum point contact. Zero-bias features in
tunneling spectroscopy appear at finite magnetic fields, and oscillate in
amplitude and split away from zero bias as a function of magnetic field and
gate voltage. A crossover in magnetoconductance is observed: Magnetic fields
above ~ 0.5 T enhance conductance in the low-conductance (tunneling) regime but
suppress conductance in the high-conductance (multichannel) regime. We consider
these results in the context of Majorana zero modes as well as alternatives,
including Kondo effect and analogs of 0.7 structure in a disordered nanowire.Comment: Supplemental Material here:
https://dl.dropbox.com/u/1742676/Churchill_Supplemental.pd
Research notes: Glyceride structure variation in soybean varieties
The glyceride structure of an oil, i.e., the combinations of fatty acids that occur together in the triglycerides, may influence its stability to oxidation (Raghuveer and Hammond, 1967). Recently we examined the glyceride structure of about 20 varieties of soybean and related species by two techniques: stereospecific analysis and silver ion chromatography (Fatemi and Hammond, 1977a, 1977b) . Stereospecific analysis measures the proportion of each fatty acid on each of the three positions of glycerol
Integration of Vibro-Acoustography Imaging Modality with the Traditional Mammography
Vibro-acoustography (VA) is a new imaging modality that has been applied to both medical and industrial imaging. Integrating unique diagnostic information of VA with other medical imaging is one of our research interests. In this work, we establish correspondence between the VA images and traditional X-ray mammogram by adopting a flexible control-point selection technique for image registration. A modified second-order polynomial, which simply leads to a scale/rotation/translation invariant registration, was used. The results of registration were used to spatially transform the breast VA images to map with the X-ray mammography with a registration error of less than 1.65 mm. The fused image is defined as a linear integration of the VA and X-ray images. Moreover, a color-based fusion technique was employed to integrate the images for better visualization of structural information
- …