4 research outputs found

    Quercetin: A Functional Food-Flavonoid Incredibly Attenuates Emerging and Re-Emerging Viral Infections through Immunomodulatory Actions

    No full text
    Many of the medicinally active molecules in the flavonoid class of phytochemicals are being researched for their potential antiviral activity against various DNA and RNA viruses. Quercetin is a flavonoid that can be found in a variety of foods, including fruits and vegetables. It has been reported to be effective against a variety of viruses. This review, therefore, deciphered the mechanistic of how Quercetin works against some of the deadliest viruses, such as influenza A, Hepatitis C, Dengue type 2 and Ebola virus, which cause frequent outbreaks worldwide and result in significant morbidity and mortality in humans through epidemics or pandemics. All those have an alarming impact on both human health and the global and national economies. The review extended computing the Quercetin-contained natural recourse and its modes of action in different experimental approaches leading to antiviral actions. The gap in effective treatment emphasizes the necessity of a search for new effective antiviral compounds. Quercetin shows potential antiviral activity and inhibits it by targeting viral infections at multiple stages. The suppression of viral neuraminidase, proteases and DNA/RNA polymerases and the alteration of many viral proteins as well as their immunomodulation are the main molecular mechanisms of Quercetin’s antiviral activities. Nonetheless, the huge potential of Quercetin and its extensive use is inadequately approached as a therapeutic for emerging and re-emerging viral infections. Therefore, this review enumerated the food-functioned Quercetin source, the modes of action of Quercetin for antiviral effects and made insights on the mechanism-based antiviral action of Quercetin

    Quercetin: A Functional Food-Flavonoid Incredibly Attenuates Emerging and Re-Emerging Viral Infections through Immunomodulatory Actions

    No full text
    Many of the medicinally active molecules in the flavonoid class of phytochemicals are being researched for their potential antiviral activity against various DNA and RNA viruses. Quercetin is a flavonoid that can be found in a variety of foods, including fruits and vegetables. It has been reported to be effective against a variety of viruses. This review, therefore, deciphered the mechanistic of how Quercetin works against some of the deadliest viruses, such as influenza A, Hepatitis C, Dengue type 2 and Ebola virus, which cause frequent outbreaks worldwide and result in significant morbidity and mortality in humans through epidemics or pandemics. All those have an alarming impact on both human health and the global and national economies. The review extended computing the Quercetin-contained natural recourse and its modes of action in different experimental approaches leading to antiviral actions. The gap in effective treatment emphasizes the necessity of a search for new effective antiviral compounds. Quercetin shows potential antiviral activity and inhibits it by targeting viral infections at multiple stages. The suppression of viral neuraminidase, proteases and DNA/RNA polymerases and the alteration of many viral proteins as well as their immunomodulation are the main molecular mechanisms of Quercetin’s antiviral activities. Nonetheless, the huge potential of Quercetin and its extensive use is inadequately approached as a therapeutic for emerging and re-emerging viral infections. Therefore, this review enumerated the food-functioned Quercetin source, the modes of action of Quercetin for antiviral effects and made insights on the mechanism-based antiviral action of Quercetin

    A versatile functional food source Lasia spinosa leaf extract modulates the mRNA expression of a set of antioxidant genes and recovers the paracetamol-induced hepatic injury by normalizing the biochemical and histological markers

    No full text
    Lasia spinosa leaf extract (LSML) has been studied as a functional food source for DNA damage protection and antioxidant gene expression in paracetamol (PCM)-induced liver injury. The DNA damage-protecting capacity of LSML was evaluated using pBR322 plasmid DNA. A toxic dose of PCM was administered to rats, followed by an intervention with LSML of 65–250 mg/kg for 22 days. In LSML-treated animals, a significant decrease in hepatic parameters, hepatocyte growth, and cell injury was noticed when compared to the hepatic control. The increase of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), and decrease of malondialdehyde (MDA) were manifested. The serum total protein, ALP, ALT, AST, and bilirubin reverted to normal compared to the healthy and silymarin-treated groups. An elevated mRNA expression of SOD2, CAT, GPX1, PON1, and PFK1 was manifested in LSML-treated groups. The results demonstrate that LSML could be an antioxidant gene upregulating functional food sources to protect against liver injury

    Unraveling Tamarindus indica Pulp-Derived Green Magnesium Oxide Nanoparticles for Cardioprotective Potential against Doxorubicin-Induced Cardiomyopathy: A Comprehensive Biochemical and Gene Expression Study

    No full text
    The present work investigates a sustainable approach to synthesize magnesium oxide nanoparticles (MgO NPs) using an aqueous pulp extract derived from Tamarindus indica. The effective synthesis of MgO NPs was verified by characterizing methods such as UV–vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM-EDX). These nanoparticles possess small crystallite sizes, distinctive surface shapes, specific elemental compositions, and stabilizing and encapsulating constituents. Furthermore, total phenolic content (TPC) and total flavonoid content (TFC) tests revealed the existence of phytochemical components in MgO NPs. Significantly, these MgO NPs demonstrated exceptional antioxidant capabilities, as evidenced by their strong performance in antioxidant assays such as 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), nitric oxide (NO) scavenging, and iron chelation tests. They also exhibited a notable ability to inhibit red blood cell (RBC) hemolysis and lipid peroxidation. In toxicity assessments using Baby Hamster Kidney fibroblasts (BHK-21) and Vero cell lines, the MgO NPs displayed a safe profile. Additionally, in vivo studies on Doxorubicin (DOX)-induced cardiotoxicity revealed the cardioprotective properties of these NPs, accompanied by a detailed understanding of the underlying mechanisms. Pretreatment with MgO NPs effectively countered DOX-induced alterations in cardiac biomarkers, lipid profiles, cardiac enzymes, and lipid peroxidation. Furthermore, they modulated apoptosis-related markers (caspase-3 and p53), upregulated antiapoptotic (Bcl-2), and antioxidant (SOD) markers, suggesting their potential therapeutic value in addressing DOX-induced cardiomyopathy. In conclusion, this study underscores the promising cardioprotective, hypolipidemic, antioxidant, and antiapoptotic qualities of MgO NPs derived from tamarind pulp, offering valuable insights into their therapeutic applications and underlying biological mechanisms
    corecore