42 research outputs found

    HIDEA syndrome: A new case report highlighting similarities with ROHHAD syndrome.

    Full text link
    peer reviewedContext: ROHHAD syndrome presents a significant resemblance to HIDEA syndrome. The latter is caused by biallelic loss-of-function variants in the P4HTM gene and encompasses hypotonia, intellectual disabilities, eye abnormalities, hypoventilation, and dysautonomia. We report the first patient identified with HIDEA syndrome from our ROHHAD cohort. Clinical case: Our patient was a 21-month-old girl who had a history of severe respiratory infections requiring intensive care, hypotonia, abnormal eye movements, and rapid weight gain. Polysomnography identified severe central hypoventilation. During her follow-up, a significant psychomotor delay and the absence of language were gradually observed. The prolactin levels were initially increased. Hypothermia was reported at 4 years. Exome sequencing identified a new homozygous truncating P4HTM variant. Discussion: Our patient met the diagnosis criteria for ROHHAD, which included rapid weight gain, central hypoventilation appearing after 1.5 years of age, hyperprolactinemia suggesting hypothalamic dysfunction, and autonomic dysfunction manifesting as strabismus and hypothermia. However, she also presented with severe neurodevelopmental delay, which is not a classic feature of ROHHAD syndrome. HIDEA syndrome presents similarities with ROHHAD, including hypoventilation, obesity, and dysautonomia. To date, only 14% of endocrinological disturbances have been reported in HIDEA patients. Better delineation of both syndromes is required to investigate the eventual involvement of P4HTM, a regulator of calcium dynamics and gliotransmission, in ROHHAD patients. Conclusion: In the case of clinical evidence of ROHHAD in a child with abnormal neurological development or eye abnormalities, we suggest that the P4HTM gene be systematically interrogated in addition to the analysis of the PHOX2B gene. A better delineation of the natural history of HIDEA is required to allow further comparisons between features of HIDEA and ROHHAD. The clinical similarities could potentially orient some molecular hypotheses in the field of ROHHAD research

    The Role of MCM9 in the Etiology of Sertoli Cell-Only Syndrome and Premature Ovarian Insufficiency

    Full text link
    peer reviewedInfertility in couples is a common problem, with both female and male factors contributing to similar extents. Severe, congenital disorders affecting fertility are, however, rare. While folliculogenesis and spermatogenesis are generally orchestrated via different mechanisms, some genetic anomalies can impair both female and male gametogenesis. Minichromosome maintenance complex component 9 (MCM9) is involved in DNA repair and mutations of the MCM9 gene have been previously reported in females with premature ovarian insufficiency (POI). MCM9 is also an emerging cancer risk gene. We performed next-generation and Sanger sequencing of fertility and related genes and hormonal and imaging studies in a kindred whose members had POI and disordered spermatogenesis. We identified a homozygous pathogenic MCM9 variant, c.394C>T (p.Arg132*) in three sisters affected by POI due to ovarian dysgenesis and their brother who had normal pubertal development but suffered from non-obstructive azoospermia. Testicular biopsy revealed Sertoli cell-only testicular histopathology. No evidence of early onset cancer was found in the homozygotic family members, but they were all young (<30 years) at the time of the study. In the male patient the homozygous MCM9 variant led to normal pubertal development and hormonal levels but caused a Sertoli-cell-only syndrome with non-obstructive azoospermia. In the homozygous females studied, the clinical, hormonal, and gonadal phenotypes revealed ovarian dysgenesis consistent with previous reports. Active screening for potential colorectal and other cancer risks in the homozygotic MCM9 subjects has been instigated

    Balancing Selection of a Frame-Shift Mutation in the MRC2 Gene Accounts for the Outbreak of the Crooked Tail Syndrome in Belgian Blue Cattle

    Get PDF
    We herein describe the positional identification of a 2-bp deletion in the open reading frame of the MRC2 receptor causing the recessive Crooked Tail Syndrome in cattle. The resulting frame-shift reveals a premature stop codon that causes nonsense-mediated decay of the mutant messenger RNA, and the virtual absence of functional Endo180 protein in affected animals. Cases exhibit skeletal anomalies thought to result from impaired extracellular matrix remodeling during ossification, and as of yet unexplained muscular symptoms. We demonstrate that carrier status is very significantly associated with desired characteristics in the general population, including enhanced muscular development, and that the resulting heterozygote advantage caused a selective sweep which explains the unexpectedly high frequency (25%) of carriers in the Belgian Blue Cattle Breed

    Exome sequencing of tumors: relevance in copy-number alteration (CNA) analysis and fixed tissue samples.

    Full text link
    Genomic DNA has been extracted from both cryopreserved and formalin-fixed paraffin-embedded forms of 2 different tumor samples (triple negative, and Her2+). Exome sequencing has been performed on all 4 forms, as well as SNP and CNA detection. A comparison of the various metrics and results related to the sequencing, mapping, and variants detection has been done, outlining what can, and can’t be done with exome data sequenced from cryopreserved and FFPE tissue.Développement sur base du séquençage d'ADN à haut débit de tests théranostiques pour le cancer du sei

    A direct link between growth retardation and inflammation? Identification of a splice site mutation in the bovine RNF11 gene

    Full text link
    « RILOUKE ! » Tares et Pathologies à Composante Héréditaire en Race Blanc-Bleu Belge, Vers le Développement d’un Réseau Intégré de Lutt

    AN INTEGRATED APPROACH FOR THE MANAGEMENT OF INHERITED DISORDERS IN BELGIAN BLUE CATTLE BREED IN BELGIUM

    Full text link
    RILOUKE: vers un réseau intégré de lutte contre les défauts d'origines génétiques dans la race Bmanc-bleu Belg

    A next-generation newborn screening pilot study: NGS on dried blood spots detects causal mutations in patients with inherited metabolic diseases.

    Full text link
    The range of applications performed on dried blood spots (DBS) widely broadened during the past decades to now include next-generation sequencing (NGS). Previous publications provided a general overview of NGS capacities on DBS-extracted DNA but did not focus on the identification of specific disorders. We thus aimed to demonstrate that NGS was reliable for detecting pathogenic mutations on genomic material extracted from DBS. Assuming the future implementation of NGS technologies into newborn screening (NBS), we conducted a pilot study on fifteen patients with inherited metabolic disorders. Blood was collected from DBS. Whole-exome sequencing was performed, and sequences were analyzed with a specific focus on genes related to NBS. Results were compared to the known pathogenic mutations previously identified by Sanger sequencing. Causal mutations were readily characterized, and multiple polymorphisms have been identified. According to variant database prediction, an unexplained homozygote pathogenic mutation, unrelated to patient's disorder, was also found in one sample. While amount and quality of DBS-extracted DNA are adequate to identify causal mutations by NGS, bioinformatics analysis revealed critical drawbacks: coverage fluctuations between regions, difficulties in identifying insertions/deletions, and inconsistent reliability of database-referenced variants. Nevertheless, results of this study lead us to consider future perspectives regarding "next-generation" NBS

    Exome copy number variation detection: Use of a pool of unrelated healthy tissue as reference sample

    Full text link
    An increasing number of bioinformatic tools designed to detect CNVs (copy number variants) in tumor samples based on paired exome data where a matched healthy tissue constitutes the reference have been published in the recent years. The idea of using a pool of unrelated healthy DNA as reference has previously been formulated but not thoroughly validated. As of today, the gold standard for CNV calling is still aCGH but there is an increasing interest in detecting CNVs by exome sequencing. We propose to design a metric allowing the comparison of two CNV profiles, independently of the technique used and assessed the validity of using a pool of unrelated healthy DNA instead of a matched healthy tissue as reference in exome-based CNV detection. We compared the CNV profiles obtained with three different approaches (aCGH, exome sequencing with a matched healthy tissue as reference, exome sequencing with a pool of eight unrelated healthy tissue as reference) on three multiple myeloma samples. We show that the usual analyses performed to compare CNV profiles (deletion/amplification ratios and CNV size distribution) lack in precision when confronted with low LRR values, as they only consider the binary status of each CNV. We show that the metric-based distance constitutes a more accurate comparison of two CNV profiles. Based on these analyses, we conclude that a reliable picture of CNV alterations in multiple myeloma samples can be obtained from whole-exome sequencing in the absence of a matched healthy sample

    Allelic heterogeneity of Crooked Tail Syndrome: result of balancing selection?

    Full text link
    peer reviewed« RILOUKE ! » Tares et Pathologies à Composante Héréditaire en Race Blanc-Bleu Belge, Vers le Développement d’un Réseau Intégré de Lutt
    corecore