64 research outputs found
Freshwater Cyanobacterial Toxins, Cyanopeptides and Neurodegenerative Diseases.
Cyanobacteria produce a wide range of structurally diverse cyanotoxins and bioactive cyanopeptides in freshwater, marine, and terrestrial ecosystems. The health significance of these metabolites, which include genotoxic- and neurotoxic agents, is confirmed by continued associations between the occurrence of animal and human acute toxic events and, in the long term, by associations between cyanobacteria and neurodegenerative diseases. Major mechanisms related to the neurotoxicity of cyanobacteria compounds include (1) blocking of key proteins and channels; (2) inhibition of essential enzymes in mammalian cells such as protein phosphatases and phosphoprotein phosphatases as well as new molecular targets such as toll-like receptors 4 and 8. One of the widely discussed implicated mechanisms includes a misincorporation of cyanobacterial non-proteogenic amino acids. Recent research provides evidence that non-proteinogenic amino acid BMAA produced by cyanobacteria have multiple effects on translation process and bypasses the proof-reading ability of the aminoacyl-tRNA-synthetase. Aberrant proteins generated by non-canonical translation may be a factor in neuronal death and neurodegeneration. We hypothesize that the production of cyanopeptides and non-canonical amino acids is a more general mechanism, leading to mistranslation, affecting protein homeostasis, and targeting mitochondria in eukaryotic cells. It can be evolutionarily ancient and initially developed to control phytoplankton communities during algal blooms. Outcompeting gut symbiotic microorganisms may lead to dysbiosis, increased gut permeability, a shift in blood-brain-barrier functionality, and eventually, mitochondrial dysfunction in high-energy demanding neurons. A better understanding of the interaction between cyanopeptides metabolism and the nervous system will be crucial to target or to prevent neurodegenerative diseases
Recommended from our members
Human cytokines activate JAK–STAT signaling pathway in porcine ocular tissue
Background: The JAK/STAT (Janus Tyrosine Kinase, Signal Transducers and Activators of Transcription) pathway is associated with cytokine or growth factor receptors and it is critical for growth control, developmental regulation and homeostasis. The use of porcine ocular cells as putative xenotransplants appears theoretically possible. The aim of this study was to investigate the response of various porcine ocular cells in vitro to human cytokines in regard to the activation of JAK-STAT signaling pathways. Methods: Porcine lens epithelial cells, pigmented iris epithelial cells and pigmented ciliary body cells were used in this study. These cells were isolated from freshly enucleated porcine eyes by enzymatic digestion. Cultured cells between passages 3–8 were used in all experiments. Electromobility shift assay (EMSA), proliferation assay, immunofluorescence staining and flow cytometry were used to evaluate the JAK-STAT signaling pathway in these cells. Results: JAK/STAT signaling pathways could be activated in porcine pigmented epithelial ciliary body cells, in pigmented iris epithelial cells and in lens epithelial cells in response to porcine and human interferons and cytokines. All cells showed very strong STAT1 activation upon stimulation with porcine interferon-gamma. Porcine ocular cells also respond to human cytokines; IFN-alpha induced strong activation of STAT1 in EMSA, flow cytometry and immunofluorescence experiments whereas activation of STAT3 was less strong in EMSA, but strong in flow cytometry and immunofluorescence. Human recombinant IL-6 activated STAT3 and human IL-4 activated STAT6. With the help of immunofluorescence assay and flow cytometry we observed nuclear localization of STAT proteins after activation of porcine ocular cells with cytokines and interferons. Human IFN-α had an inhibitory effect on porcine ocular cells in proliferation assays. Conclusion: Our study demonstrated that some types of human cytokines and interferon activate intracellular JAK-STAT signaling pathways in porcine ocular cells. We hypothesize that direct stimulation of the JAK-STAT pathway in porcine cells in response to human cytokines will lead to complications or failure, if pig-to-human ocular tissue xenotransplantation were to be carried out. For successful xenotransplantation among other obstacles there must be new approaches developed to regulate signaling pathways
Ten-year survival trends of neovascular age-related macular degeneration at first presentation
BACKGROUND: To describe 10-year trends in visual outcomes, anatomical outcomes and treatment burden of patients receiving antivascular endothelial growth factor (anti-VEGF) therapy for neovascular age-related macular degeneration (nAMD). METHODS: Retrospective cohort study of treatment-naïve, first-affected eyes with nAMD started on ranibizumab before January 1, 2009. The primary outcome was time to best-corrected visual acuity (BCVA) falling ≤35 ETDRS letters after initiating anti-VEGF therapy. Secondary outcomes included time to BCVA reaching ≥70 letters, proportion of eyes with BCVA ≥70 and ≤35 letters in 10 years, mean trend of BCVA and central retinal thickness over 10 years, and mean number of injections. RESULTS: For our cohort of 103 patients, Kaplan-Meier analyses demonstrated median time to BCVA reaching ≤35 and ≥70 letters were 37.8 (95% CI 22.2 to 65.1) and 8.3 (95% CI 4.8 to 20.9) months after commencing anti-VEGF therapy, respectively. At the final follow-up, BCVA was ≤35 letters and ≥70 letters in 41.1% and 21%, respectively, in first-affected eyes, while this was the case for 5.4% and 48.2%, respectively, in a patient's better-seeing eye. Mean injection number was 37.0±24.2 per eye and 53.6±30.1 at patient level (63.1% of patients required injections in both eyes). CONCLUSIONS: The chronicity of nAMD disease and its management highlights the importance of long-term visual prognosis. Our analyses suggest that one in five patients will retain good vision (BCVA ≥70 ETDRS letters) in the first-affected eye at 10 years after starting anti-VEGF treatment; yet, one in two patients will have good vision in their better-seeing eye. Moreover, our data suggest that early treatment of nAMD is associated with better visual outcomes
Globotrioasylsphingosine levels and optical coherence tomography angiography in fabry disease patients
Background: To date, there are no studies associating the dried blood spot (DBS) levels of globotrioasylsphingosine (lysoGb3) with quantitative optical coherence tomography angiography (OCTA) parameters in Fabry disease (FD) patients. Here, we aimed to investigate the association between OCTA vessel density (VD), vessel length density (VLD) with DBS lysoGb3. Methods: A retrospective, single center analysis of all consecutive FD patients enrolled at the Department of Ophthalmology of the University Hospital of Zurich from December 1st, 2017 to September 9th, 2020. An association between VD and VLD detected by OCTA and lysoGb3 was investigated using a linear mixed model. Results: A total of 57 FD patients (23 male, 34 female; 109 eyes) were included. Forty-one patients suffered from the classic phenotype and 16 from the later-onset phenotype. Lys-oGb3 inversely correlated with VD and VLD in both the superficial (VD: p = 0.034; VLD: p = 0.02) and deep capillary plexus (VD: p = 0.017; VLD: p = 0.018) in the overall FD cohort. Conclusions: Our study shows an association between lysoGb3 and OCTA VD and VLD. This supports the hypothesis that quantitative OCTA parameters might be useful as diagnostic biomarkers for evaluating sys-temic involvement in FD, and possibly other diseases
Piranha-etched titanium nanostructure reduces biofilm formation in vitro.
OBJECTIVES
Nano-modified surfaces for dental implants may improve gingival fibroblast adhesion and antibacterial characteristics through cell-surface interactions. The present study investigated how a nanocavity titanium surface impacts the viability and adhesion of human gingival fibroblasts (HGF-1) and compared its response to Porphyromonas gingivalis with those of marketed implant surfaces.
MATERIAL AND METHODS
Commercial titanium and zirconia disks, namely, sandblasted and acid-etched titanium (SLA), sandblasted and acid-etched zirconia (ZLA), polished titanium (PT) and polished zirconia (ZrP), and nanostructured disks (NTDs) were tested. Polished titanium disks were etched with a 1:1 combination of 98% H2SO4 and 30% H2O2 (piranha etching) for 5 h at room temperature to produce the NTDs. Atomic force microscopy was used to measure the surface topography, roughness, adhesion force, and work of adhesion. MTT assays and immunofluorescence staining were used to examine cell viability and adhesion after incubation of HGF-1 cells on the disk surfaces. After incubation with P. gingivalis, conventional culture, live/dead staining, and SEM were used to determine the antibacterial properties of NTD, SLA, ZLA, PT, and ZrP.
RESULTS
Etching created nanocavities with 10-20-nm edge-to-edge diameters. Chemical etching increased the average surface roughness and decreased the surface adherence, while polishing and flattening of ZrP increased adhesion. However, only the NTDs inhibited biofilm formation and bacterial adherence. The NTDs showed antibacterial effects and P. gingivalis vitality reductions. The HGF-1 cells demonstrated greater viability on the NTDs compared to the controls.
CONCLUSION
Nanocavities with 10-20-nm edge-to-edge diameters on titanium disks hindered P. gingivalis adhesion and supported the adhesion of gingival fibroblasts when compared to the surfaces of currently marketed titanium or zirconia dental implants.
CLINICAL RELEVANCE
This study prepared an effective antibacterial nanoporous surface, assessed its effects against oral pathogens, and demonstrated that surface characteristics on a nanoscale level influenced oral pathogens and gingival fibroblasts.
CLINICAL TRIAL REGISTRATION
not applicable
T lymphocytes induce human cancer cells derived from solid malignant tumors to secrete galectin-9 which facilitates immunosuppression in cooperation with other immune checkpoint proteins.
BACKGROUND
Galectin-9 is a member of the family of lectin proteins and crucially regulates human immune responses, particularly because of its ability to suppress the anticancer activities of T lymphocytes and natural killer cells. Recent evidence demonstrated that galectin-9 is highly expressed in a wide range of human malignancies including the most aggressive tumors, such as high-grade glioblastomas and pancreatic ductal adenocarcinomas, as well as common malignancies such as breast, lung and colorectal cancers. However, solid tumor cells at rest are known to secrete either very low amounts of galectin-9 or, in most of the cases, do not secrete it at all. Our aims were to elucidate whether T cells can induce galectin-9 secretion in human cancer cells derived from solid malignant tumors and whether this soluble form displays higher systemic immunosuppressive activity compared with the cell surface-based protein.
METHODS
A wide range of human cancer cell lines derived from solid tumours, keratinocytes and primary embryonic cells were employed, together with helper and cytotoxic T cell lines and human as well as mouse primary T cells. Western blot analysis, ELISA, quantitative reverse transcriptase-PCR, on-cell Western and other measurement techniques were used to conduct the study. Results were validated using in vivo mouse model.
RESULTS
We discovered that T lymphocytes induce galectin-9 secretion in various types of human cancer cells derived from solid malignant tumors. This was demonstrated to occur via two differential mechanisms: first by translocation of galectin-9 onto the cell surface followed by its proteolytic shedding and second due to autophagy followed by lysosomal secretion. For both mechanisms a protein carrier/trafficker was required, since galectin-9 lacks a secretion sequence. Secreted galectin-9 pre-opsonised T cells and, following interaction with other immune checkpoint proteins, their activity was completely attenuated. As an example, we studied the cooperation of galectin-9 and V-domain Ig-containing suppressor of T cell activation (VISTA) proteins in human cancer cells.
CONCLUSION
Our results underline a crucial role of galectin-9 in anticancer immune evasion. As such, galectin-9 and regulatory pathways controlling its production should be considered as key targets for immunotherapy in a large number of cancers
Moorfields AMD database report 2: fellow eye involvement with neovascular age-related macular degeneration.
BACKGROUND/AIMS: Neovascular age-related macular degeneration (nAMD) is frequently bilateral, and previous reports on 'fellow eyes' have assumed sequential treatment after a period of treatment of the first eye only. The aim of our study was to analyse baseline characteristics and visual acuity (VA) outcomes of fellow eye involvement with nAMD, specifically differentiating between sequential and non-sequential (due to macular scarring in the first eye) antivascular endothelial growth factor treatment and timelines for fellow eye involvement. METHODS: Retrospective, electronic medical record database study of the Moorfields AMD database of 6265 patients/120 286 single entries with data extracted between 21 October 2008 and 9 August 2018. The data set for analysis consisted of 1180 sequential, 807 non-sequential and 3410 unilateral eyes. RESULTS: Mean VA (ETDRS letters±SD) of sequentially treated fellow eyes at baseline was significantly higher (63±13), VA gain over 2 years lower (0.37±14) and proportion of eyes with good VA (≥70 letters) higher (46%) than the respective first eyes (baseline VA 54±16, VA gain at 2 years 5.6±15, percentage of eyes with good VA 39%). Non-sequential fellow eyes showed baseline characteristics and VA outcomes similar to first eyes. Fellow eye involvement rate was 32% at 2 years, and median time interval to fellow eye involvement was 71 (IQR: 27-147) weeks. CONCLUSION: This report shows that sequentially treated nAMD fellow eyes have better baseline and final VA than non-sequentially treated eyes after 2 years of treatment. Sequentially treated eyes also had a greater proportion with good VA after 2 years
The Moorfields AMD Database Report 2 - Fellow Eye Involvement with Neovascular Age-related Macular Degeneration
BACKGROUND/AIMS: Neovascular age-related macular degeneration (nAMD) is frequently bilateral, and previous reports on ‘fellow eyes’’ have assumed sequential treatment after a period of treatment of the first eye only. The aim of our study was to analyse baseline characteristics and visual acuity (VA) outcomes of fellow eye involvement with nAMD, specifically differentiating between sequential and non-sequential (due to macular scarring in the first eye) anti-vascular endothelial growth factor treatment and timelines for fellow eye involvement.
METHODS: Retrospective, electronic medical record database study of the Moorfields AMD database of 8174 eyes/120,756 single entries with data extracted between October 21, 2008 and August 9, 2018. The dataset for analysis consisted of 1180 sequential, 413 nonsequential, and 1110 unilateral eyes.
RESULTS: Mean VA of sequentially treated fellow eyes at baseline was significantly higher (62±13), VA gain over two years lower (0.65±14), and proportion of eyes with good VA (≥20/40 or 70 letters) higher (46%) than the respective first eyes (baseline VA 54±16, VA gain at two years 5.6±15, percentage of eyes with good VA 38%). Non-sequential fellow eyes showed baseline characteristics and VA outcomes similar to first eyes. Fellow eye involvement rate was 32% at two years, and median time interval to fellow eye involvement was 71 (IQR 27-147) weeks.
CONCLUSION: This reports shows sequentially treated nAMD fellow eyes have better baseline and final VA than non-sequentially treated eyes after 2 years of treatment. Sequentially treated eyes also had a greater proportion with good VA after 2 years of treatment.
PRECIS Depending on age, fellow eye involvement occurs in 32% of patients with neovascular AMD by two years. Fellow eyes generally maintain better vision, except in cases where late-stage disease in the first eye was untreated
One- and two-year visual outcomes from the Moorfields age-related macular degeneration database: a retrospective cohort study and an open science resource.
OBJECTIVES: To analyse treatment outcomes and share clinical data from a large, single-centre, well-curated database (8174 eyes/6664 patients with 120 756 single entries) of patients with neovascular age-related macular degeneration (AMD) treated with anti-vascular endothelial growth factor (VEGF). By making our depersonalised raw data openly available, we aim to stimulate further research in AMD, as well as set a precedent for future work in this area. SETTING: Retrospective, comparative, non-randomised electronic medical record (EMR) database cohort study of the UK Moorfields AMD database with data extracted between 2008 and 2018. PARTICIPANTS: Including one eye per patient, 3357 eyes/patients (61% female). Extraction criteria were ≥1 ranibizumab or aflibercept injection, entry of 'AMD' in the diagnosis field of the EMR and a minimum of 1 year of follow-up. Exclusion criteria were unknown date of first injection and treatment outside of routine clinical care at Moorfields before the first recorded injection in the database. MAIN OUTCOME MEASURES: Primary outcome measure was change in VA at 1 and 2 years from baseline as measured in Early Treatment Diabetic Retinopathy Study letters. Secondary outcomes were the number of injections and predictive factors for VA gain. RESULTS: Mean VA gain at 1 year and 2 years were +5.5 (95% CI 5.0 to 6.0) and +4.9 (95% CI 4.2 to 5.6) letters, respectively. Fifty-four per cent of eyes gained ≥5 letters at 2 years, 63% had stable VA (±≤14 letters), 44% of eyes maintained good VA (≥70 letters). Patients received a mean of 7.7 (95% CI 7.6 to 7.8) injections during year 1 and 13.0 (95% CI 12.8 to 13.2) injections over 2 years. Younger age, lower baseline VA and more injections were associated with higher VA gain at 2 years. CONCLUSION: This study benchmarks high quality EMR study results of real life AMD treatment and promotes open science in clinical AMD research by making the underlying data publicly available
High Mobility Group Box 1 (HMGB1) Induces Toll-Like Receptor 4-Mediated Production of the Immunosuppressive Protein Galectin-9 in Human Cancer Cells
High mobility group box 1 (HMGB1) is a non-histone protein which is predominantly localised in the cell nucleus. However, stressed, dying, injured or dead cells can release this protein into the extracellular matrix passively. In addition, HMGB1 release was observed in cancer and immune cells where this process can be triggered by various endogenous as well as exogenous stimuli. Importantly, released HMGB1 acts as a so-called “danger signal” and could impact on the ability of cancer cells to escape host immune surveillance. However, the molecular mechanisms underlying the functional role of HMGB1 in determining the capability of human cancer cells to evade immune attack remain unclear. Here we report that the involvement of HMGB1 in anti-cancer immune evasion is determined by Toll-like receptor (TLR) 4, which recognises HMGB1 as a ligand. We found that HGMB1 induces TLR4-mediated production of transforming growth factor beta type 1 (TGF-β), displaying autocrine/paracrine activities. TGF-β induces production of the immunosuppressive protein galectin-9 in cancer cells. In TLR4-positive cancer cells, HMGB1 triggers the formation of an autocrine loop which induces galectin-9 expression. In malignant cells lacking TLR4, the same effect could be triggered by HMGB1 indirectly through TLR4-expressing myeloid cells present in the tumour microenvironment (e. g. tumour-associated macrophages)
- …