14 research outputs found

    Effect of egg turning and incubation time on carbonic anhydrase gene expression in the blastoderm of the Japanese quail (Coturnix c. japonica)

    Get PDF
    (1) The gene expression of carbonic anhydrase, a key enzyme for the production sub-embryonic fluid (SEF), was assessed in turned and unturned eggs of the Japanese quail. The plasma membrane-associated isoforms CA IV, CAIX, CA XII, CA XIV, and the cytoplasmic isoform CA II, were investigated in the extra-embryonic tissue of the blastoderm and in embryonic blood. (2) Eggs were incubated at 37.6C, c. 60% R.H., and turned hourly (90 ) or left unturned. From 48 to 96 hours of incubation mRNA was extracted from blastoderm tissue, reverse-transcribed to cDNA and quantified by real-time qPCR using gene-specific primers. Blood collected at 96h was processed identically. (3) Blastoderm CAIV gene expression increased with the period of incubation only in turned eggs, with maxima at 84 and 96h of incubation. Only very low levels were found in blood. (4) Blastoderm CA II gene expression was greatest at 48 and 54h of incubation, subsequently declining to much lower levels and una ected by turning. Blood CA II gene expression was about 25-fold greater than that in the blastoderm. (5) The expression of CA IX in the blastoderm was the highest of all isoforms, yet unaffected by turning. CA XII did not amplify and CA XIV was present at unquantifiable low levels. (6) It is concluded that solely gene expression for CA IV is sensitive to egg turning, and that increased CA IV gene expression could account for the additional SEF mass found at 84-96h of incubation. in embryos of turned eggs

    Influence of egg pre-storage heating period and storage length on incubation results

    No full text
    This experiment aimed at evaluating the influence of different heating times of settable eggs of Cobb 500® broiler breeders before submitting them to different storage periods on egg weight loss, embryo mortality, and hatchability. A total number of 1,980 eggs were distributed in a completely randomized experimental design with a 3 x 3 factorial arrangement, comprising nine treatments with 22 replicates of 10 eggs each. The following factors were analyzed: pre-storage heating periods (0, 6, 12 hours at 36.92°C) and storage periods (4, 9, 14 days at 12.06°C). After storage, eggs were incubated under usual conditions, and were transferred to the hatcher at 442 hours of incubation. Eggs were weighed before heating, incubation, and transference to determine weight loss. Partial hatchability was determined at 480 hours, and total hatchability at 498 hours of incubation. Embryo mortality was determined in non-hatched eggs. It was concluded that heating eggs for six hour before storage improves incubation results as it decreases incubation length and late embryo mortality, therefore its use can be indicated in commercial operations. Storing eggs for 14 days and pre-heating for 14 days and pre-heating for 12 hours severely impair incubation results, and therefore are not recommended

    The avian-specific small heat shock protein HSP25 is a constitutive protector against environmental stresses during blastoderm dormancy

    Get PDF
    Small heat shock proteins (sHSPs) range in size from 12 to 42 kDa and contain an α-crystalline domain. They have been proposed to play roles in the first line of defence against various stresses in an ATP-independent manner. In birds, a newly oviposited blastoderm can survive several weeks in a dormant state in low-temperature storage suggesting that blastoderm cells are basically tolerant of environmental stress. However, sHSPs in the stress-tolerant blastoderm have yet to be investigated. Thus, we characterised the expression and function of sHSPs in the chicken blastoderm. We found that chicken HSP25 was expressed especially in the blastoderm and was highly upregulated during low-temperature storage. Multiple alignments, phylogenetic trees, and expression in the blastoderms of Japanese quail and zebra finch showed homologues of HSP25 were conserved in other avian species. After knockdown of chicken HSP25, the expression of pluripotency marker genes decreased significantly. Furthermore, loss of function studies demonstrated that chicken HSP25 is associated with anti-apoptotic, anti-oxidant, and pro-autophagic effects in chicken blastoderm cells. Collectively, these results suggest avian HSP25 could play an important role in association with the first line of cellular defences against environmental stress and the protection of future embryonic cells in the avian blastoderm
    corecore