27 research outputs found

    The oligodeoxynucleotide sequences corresponding to never-expressed peptide motifs are mainly located in the non-coding strand

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We study the usage of specific peptide platforms in protein composition. Using the pentapeptide as a unit of length, we find that in the universal proteome many pentapeptides are heavily repeated (even thousands of times), whereas some are quite rare, and a small number do not appear at all. To understand the physico-chemical-biological basis underlying peptide usage at the proteomic level, in this study we analyse the energetic costs for the synthesis of rare and never-expressed versus frequent pentapeptides. In addition, we explore residue bulkiness, hydrophobicity, and codon number as factors able to modulate specific peptide frequencies. Then, the possible influence of amino acid composition is investigated in zero- and high-frequency pentapeptide sets by analysing the frequencies of the corresponding inverse-sequence pentapeptides. As a final step, we analyse the pentadecamer oligodeoxynucleotide sequences corresponding to the never-expressed pentapeptides.</p> <p>Results</p> <p>We find that only DNA context-dependent constraints (such as oligodeoxynucleotide sequence location in the minus strand, introns, pseudogenes, frameshifts, etc.) provide a coherent mechanistic platform to explain the occurrence of never-expressed versus frequent pentapeptides in the protein world.</p> <p>Conclusions</p> <p>This study is of importance in cell biology. Indeed, the rarity (or lack of expression) of specific 5-mer peptide modules implies the rarity (or lack of expression) of the corresponding <it>n</it>-mer peptide sequences (with <it>n </it>< 5), so possibly modulating protein compositional trends. Moreover the data might further our understanding of the role exerted by rare pentapeptide modules as critical biological effectors in protein-protein interactions.</p

    Peptide matching between Epstein–Barr virus and human proteins

    Get PDF
    Epstein–Barr virus proteins were examined for amino acid sequence matching to human proteins at the decapeptide level. We report that numerous EBV peptides of different length (from 10- to 13-mer) are present in 28 human proteins. The viral vs. human peptide overlap mainly involves the glycine-rich region allocated in the NH2 terminus of Epstein–Barr nuclear antigen 1 protein and host cellular components that play crucial roles in basic biochemical pathways, such as chromatin remodeling, RNA splicing, transmission across chemical/electrical synapses, and neurogenesis, and that, when altered, may characterize various pathologies such as immunodeficiency, systemic lupus erythematosus, myelination, and speech disorders. The present results might contribute to understand and define the (physio) pathological relationships and interactions occurring between EBV and the human host

    Identification and Somatic Characterization of the Germline PTEN Promoter Variant rs34149102 in a Family with Gastrointestinal and Breast Tumors

    Get PDF
    Genetic variants located in non-coding regions can affect processes that regulate protein expression, functionally contributing to human disease. Germline heterozygous mutations in the non-coding region of the PTEN gene have been previously identified in patients with PTEN hamartoma tumor syndrome (PHTS) diagnosed with breast, thyroid, and/or endometrial cancer. In this study, we report a PTEN promoter variant (rs34149102 A allele) that was identified by direct sequencing in an Italian family with a history of gastroesophageal junction (GEJ) adenocarcinoma and breast cancer. In order to investigate the putative functional role of the rs34149102 A allele variant, we evaluated the status of PTEN alterations at the somatic level. We found that PTEN protein expression was absent in the GEJ adenocarcinoma tissue of the index case. Moreover, we detected the occurrence of copy number loss involving the PTEN rs34149102 major C allele in tumor tissue, revealing that the second allele was somatically inactivated. This variant is located within an active regulatory region of the PTEN core promoter, and in silico analysis suggests that it may affect the binding of the nuclear transcription factor MAZ and hence PTEN expression. Overall, these results reveal the functional role of the PTEN promoter rs34149102 A allele variant in the modulation of PTEN protein expression and highlight its contribution to hereditary cancer risk

    Characterization of a rare variant (c.2635-2A>G) of the MSH2 gene in a family with Lynch syndrome

    Get PDF
    Abstract Introduction: Lynch syndrome is caused by germline mutations in one of the mismatch repair genes (MLH1, MSH2, MSH6, and PMS2) or in the EPCAM gene. Lynch syndrome is defined on the basis of clinical, pathological, and genetic findings. Accordingly, the identification of predisposing genes allows for accurate risk assessment and tailored screening protocols. Case Description: Here, we report a family case with three family members manifesting the Lynch syndrome phenotype, all of which harbor the rare variant c.2635-2A&gt;G affecting the splice site consensus sequence of intron 15 of the MSH2 gene. This mutation was previously described only in one family with Lynch syndrome, in which mismatch repair protein expression in tumor tissues was not assessed. In this study, we report for the first time the molecular characterization of the MSH2 c.2635-2A&gt;G variant through in silico prediction analysis, microsatellite instability, and mismatch repair protein expression experiments on tumor tissues of Lynch syndrome patients. The potential effect of the splice site variant was revealed by three splicing prediction bioinformatics tools, which suggested the generation of a new cryptic splicing site. The potential pathogenic role of this variant was also revealed by the presence of microsatellite instability and the absence of MSH2/MSH6 heterodimer protein expression in the tumor cells of cancer tissues of the affected family members. Conclusions: We provide compelling evidence in favor of the pathogenic role of the MSH2 variant c.2635-2A&gt;G, which could induce an alteration of the canonical splice site and consequently an aberrant form of the protein product (MSH2)

    Selfness-nonselfness in designing an anti-B19 erythrovirus vaccine

    No full text
    Although B19 erythrovirus infection may be associated with severe clinical outcomes, especially in early infancy, pregnancy and in immunocompromised or hemolytic subjects, no vaccine is currently available. Using the concept that effective immune responses to an infectious agent may be restricted to the specific peptidome unique to that agent, we analyzed primary amino acid sequence of B19 erythrovirus, searching for peptide motifs to be used in vaccine formulations. Here, we identify and describe a set of unique viral peptides that may guarantee both high efficacy and practically no cross-reactive autoimmune responses in anti-B19 immunotherapeutic approaches

    Short Linear Motifs in Colorectal Cancer Interactome and Tumorigenesis

    No full text
    Colorectal tumorigenesis is driven by alterations in genes and proteins responsible for cancer initiation, progression, and invasion. This multistage process is based on a dense network of protein–protein interactions (PPIs) that become dysregulated as a result of changes in various cell signaling effectors. PPIs in signaling and regulatory networks are known to be mediated by short linear motifs (SLiMs), which are conserved contiguous regions of 3–10 amino acids within interacting protein domains. SLiMs are the minimum sequences required for modulating cellular PPI networks. Thus, several in silico approaches have been developed to predict and analyze SLiM-mediated PPIs. In this review, we focus on emerging evidence supporting a crucial role for SLiMs in driver pathways that are disrupted in colorectal cancer (CRC) tumorigenesis and related PPI network alterations. As a result, SLiMs, along with short peptides, are attracting the interest of researchers to devise small molecules amenable to be used as novel anti-CRC targeted therapies. Overall, the characterization of SLiMs mediating crucial PPIs in CRC may foster the development of more specific combined pharmacological approaches

    Colorectal Cancer Chemoprevention: A Dream Coming True?

    No full text
    Colorectal cancer (CRC) is one of the deadliest forms of cancer worldwide. CRC development occurs mainly through the adenoma-carcinoma sequence, which can last decades, giving the opportunity for primary prevention and early detection. CRC prevention involves different approaches, ranging from fecal occult blood testing and colonoscopy screening to chemoprevention. In this review, we discuss the main findings gathered in the field of CRC chemoprevention, focusing on different target populations and on various precancerous lesions that can be used as efficacy evaluation endpoints for chemoprevention. The ideal chemopreventive agent should be well tolerated and easy to administer, with low side effects. Moreover, it should be readily available at a low cost. These properties are crucial because these compounds are meant to be used for a long time in populations with different CRC risk profiles. Several agents have been investigated so far, some of which are currently used in clinical practice. However, further investigation is needed to devise a comprehensive and effective chemoprevention strategy for CRC

    FOXO3a from the Nucleus to the Mitochondria: A Round Trip in Cellular Stress Response

    Get PDF
    Cellular stress response is a universal mechanism that ensures the survival or negative selection of cells in challenging conditions. The transcription factor Forkhead box protein O3 (FOXO3a) is a core regulator of cellular homeostasis, stress response, and longevity since it can modulate a variety of stress responses upon nutrient shortage, oxidative stress, hypoxia, heat shock, and DNA damage. FOXO3a activity is regulated by post-translational modifications that drive its shuttling between different cellular compartments, thereby determining its inactivation (cytoplasm) or activation (nucleus and mitochondria). Depending on the stress stimulus and subcellular context, activated FOXO3a can induce specific sets of nuclear genes, including cell cycle inhibitors, pro-apoptotic genes, reactive oxygen species (ROS) scavengers, autophagy effectors, gluconeogenic enzymes, and others. On the other hand, upon glucose restriction, 5'-AMP-activated protein kinase (AMPK) and mitogen activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) -dependent FOXO3a mitochondrial translocation allows the transcription of oxidative phosphorylation (OXPHOS) genes, restoring cellular ATP levels, while in cancer cells, mitochondrial FOXO3a mediates survival upon genotoxic stress induced by chemotherapy. Interestingly, these target genes and their related pathways are diverse and sometimes antagonistic, suggesting that FOXO3a is an adaptable player in the dynamic homeostasis of normal and stressed cells. In this review, we describe the multiple roles of FOXO3a in cellular stress response, with a focus on both its nuclear and mitochondrial functions

    Applying the Concept of Peptide Uniqueness to Anti-Polio Vaccination

    No full text
    Background. Although rare, adverse events may associate with anti-poliovirus vaccination thus possibly hampering global polio eradication worldwide. Objective. To design peptide-based anti-polio vaccines exempt from potential cross-reactivity risks and possibly able to reduce rare potential adverse events such as the postvaccine paralytic poliomyelitis due to the tendency of the poliovirus genome to mutate. Methods. Proteins from poliovirus type 1, strain Mahoney, were analyzed for amino acid sequence identity to the human proteome at the pentapeptide level, searching for sequences that (1) have zero percent of identity to human proteins, (2) are potentially endowed with an immunologic potential, and (3) are highly conserved among poliovirus strains. Results. Sequence analyses produced a set of consensus epitopic peptides potentially able to generate specific anti-polio immune responses exempt from cross-reactivity with the human host. Conclusion. Peptide sequences unique to poliovirus proteins and conserved among polio strains might help formulate a specific and universal anti-polio vaccine able to react with multiple viral strains and exempt from the burden of possible cross-reactions with human proteins. As an additional advantage, using a peptide-based vaccine instead of current anti-polio DNA vaccines would eliminate the rare post-polio poliomyelitis cases and other disabling symptoms that may appear following vaccination

    Chasing the FOXO3: Insights into Its New Mitochondrial Lair in Colorectal Cancer Landscape

    No full text
    Colorectal cancer (CRC) poses a formidable challenge in terms of molecular heterogeneity, as it involves a variety of cancer-related pathways and molecular changes unique to an individual&#8217;s tumor. On the other hand, recent advances in DNA sequencing technologies provide an unprecedented capacity to comprehensively identify the genetic alterations resulting in tumorigenesis, raising the hope that new therapeutic approaches based on molecularly targeted drugs may prevent the occurrence of chemoresistance. Regulation of the transcription factor FOXO3a in response to extracellular cues plays a fundamental role in cellular homeostasis, being part of the molecular machinery that drives cells towards survival or death. Indeed, FOXO3a is controlled by a range of external stimuli, which not only influence its transcriptional activity, but also affect its subcellular localization. These regulation mechanisms are mediated by cancer-related signaling pathways that eventually drive changes in FOXO3a post-translational modifications (e.g., phosphorylation). Recent results showed that FOXO3a is imported into the mitochondria in tumor cells and tissues subjected to metabolic stress and cancer therapeutics, where it induces expression of the mitochondrial genome to support mitochondrial metabolism and cell survival. The current review discusses the potential clinical relevance of multidrug therapies that drive cancer cell fate by regulating critical pathways converging on FOXO3a
    corecore