SHORT COMMUNICATION

Peptide matching between Epstein–Barr virus and human proteins

Giovanni Capone¹, Michele Calabrò¹, Guglielmo Lucchese², Candida Fasano¹, Bruna Girardi³, Lorenzo Polimeno³ & Darja Kanduc¹

1 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy

2 Brain and Language Laboratory, Cluster of Excellence "Languages of Emotions", Free University of Berlin, Berlin, Germany

3 Section of Gastroenterology, Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy

Abstract

EBV and the human host.

This article describes a high level of peptide similarity between human proteins and proteins encoded by the Epstein Barr virus (EBV), in particular in the glycine-alanine (GA) repeat region of the nuclear antigen 1 of EBV (EBNA1). Some of the human proteins that share similarities with EBV are implicated in brain development and function. These similarities could contribute to preventing immune recognition of EBV and form the basis for molecular mimicry in autoimmune diseases.

Epstein-Barr virus proteins were examined for amino acid sequence matching to

human proteins at the decapeptide level. We report that numerous EBV peptides

of different length (from 10- to 13-mer) are present in 28 human proteins. The viral vs. human peptide overlap mainly involves the glycine-rich region allocated in the

NH2 terminus of Epstein-Barr nuclear antigen 1 protein and host cellular

components that play crucial roles in basic biochemical pathways, such as

chromatin remodeling, RNA splicing, transmission across chemical/electrical

synapses, and neurogenesis, and that, when altered, may characterize various

pathologies such as immunodeficiency, systemic lupus erythematosus, myelina-

tion, and speech disorders. The present results might contribute to understand and

define the (physio) pathological relationships and interactions occurring between

Keywords

EBV immunoevasion; EBV proteins; human proteins; peptide matching; EBV EBNA1; glycine-rich region.

Correspondence

Darja Kanduc, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy. Tel.: +390805443321 fax: +390805443317 e-mails: dkanduc@gmail.com; darja.kanduc@uniba.it

Received 19 March 2013; revised 4 July 2013; accepted 9 July 2013. Final version published online 6 August 2013.

doi:10.1111/2049-632X.12066

Editor: Alfredo Garzino-Demo

gens

The human herpesvirus 4, also called Epstein–Barr virus (EBV), is a common virus in humans (Rickinson & Kieff, 2007; http://www.cdc.gov/ncidod/diseases/ebv.htm). EBV infection, although usually asymptomatic (Klein *et al.*, 2010; Saha & Robertson, 2011), may cause mononucleosis, neoplasms, and autoimmune diseases (Cesarman, 2002; Farrell & Jarrett, 2011; Saha & Robertson, 2011; Gourzones *et al.*, 2012). However, the pathogenic contribution of EBV to tumors as well as the etiology of autoimmune diseases associated with EBV infection such as multiple sclerosis (Farrell & Jarrett, 2011; Niller *et al.*, 2011; Tselis, 2012) and systemic lupus erythematosus (SLE) remain unclear (Draborg *et al.*, 2012).

Other poorly understood issues are EBV immunoevasion, latency, and (re)activation (Jochum *et al.*, 2012; Kalla & Hammerschmidt, 2012; Severa *et al.*, 2013) as well as the

EBV ubiquitous presence in the human population, with approximately 95% of adults worldwide infected (http://www. cdc.gov/ncidod/diseases/ebv.htm; Rickinson & Kieff, 2007). It seems that a number of EBV proteins can protect the virus from the host immune attack. Such EBV proteins, also called immunoevasins, function by targeting MHC class I and MHC class II antigen presentation pathways (Ressing *et al.*, 2008; Rowe & Zuo, 2010); for example, the EBV immunoevasin interleukin-10 homolog (IL-10H) protects infected B cells from immune recognition and elimination (Jochum *et al.*, 2012), thus contributing to EBV successful persistence and immune escape.

However, EBV immunoevasin IL-10H might contribute through other additional pathways to the EBV immunoevasion phenomenon given its sequence identity to the human IL-10. In fact, IL-10H is a striking example of the conservation of

amino acid (aa) sequence between EBV and the human host (Moore *et al.*, 1990; Moore *et al.*, 2001; Yoon *et al.*, 2005), with viral IL-10H and human IL-10 sharing four continuous identical stretches ranging from 17 to 42 aa (e.g. MLRDLRDAFSRVKTFFQ, DNLLLKESLLEDFKGYLGCQAL SEMIQFYLEEVMPQAENQDP, HVNSLGENLKTLRLRLRR CHRFLPCENKSKAVEQ, KNAFNKLQEKGIYKAMSEFDIFI-NYIEAYMT). The sequence alignment of EBV IL-10H (P0CAP9, IL10H_EBVG) and human IL-10 (P22301, IL10_HUMAN) shows a percent identity equal to 77.2 at the aa level, with 139 identical positions.

In this regard, we already observed that a striking level of sequence identity to the human host might act as a camouflage mechanism of infectious agents (Natale et al., 2000; Tindle, 2002; Lucchese et al., 2009; Capone et al., 2013), because when high levels of sequence/structure identity are present between microbial and human molecules, the breaking of the self-tolerance mechanisms that prevent self-reactivity is highly improbable (Silverstein, 2001). Thus, the sharing of continuous aa sequences with host molecules may represent an elective microbial mechanism to escape immune recognition attack (Kanduc et al., 2008; Trost et al., 2010). Here, to further our understanding of how can EBV establish a persistent infection in the human host (Ressing et al., 2008; Rowe & Zuo, 2010; Jochum et al., 2012), we analyzed EBV proteins for aa sequence identity to human proteins to investigate whether other identity regions are present between EBV and the human host in addition to the above-cited sequence identities between EBV IL-10H and human IL-10.

To this aim, we examined the polyprotein derived from EBV, strain GD1, GenBank: AY961628.3, NCBI taxonomic identifier: 10376 (Zeng et al., 2005), consisting of 68 proteins (total number of aa: 34 503) listed and described at http:// www.ncbi.nlm.nih.gov/nuccore/AY961628. Sequence identity analyses of EBV proteins to the human proteome were conducted using viral decapeptides as probes to scan the Homo sapiens proteome, searching for exact peptide matches. Each probe was shifted by one residue; that is, viral decapeptides sequentially overlapped by nine residues such as MVHVLERALL, VHVLERALLE, HVLERALLEQ, were used in scanning the human proteome for peptide matching using Protein International Resource (PIR) peptide match program (pir.georgetown.edu/pirwww/search/peptide.shtml) (Wu et al., 2003). The human proteins containing viral matches were analyzed using UniProt database (http:// www.uniprot.org) (UniProt Consortium, 2009). Fragments, duplicated sequences, and obsolete entries were filtered out manually.

The peptide-by-peptide comparison of EBV and *Homo* sapiens proteomes at the decapeptide level is presented in Table 1. It can be seen that: (1) viral decapeptides repeatedly occur in 28 human proteins; (2) the peptide sharing also occurs at 11-, 12-, and 13-mer levels; (3) five of 68 EBV proteins (i.e. BDLF2, EBNA1, DEN, EBNA2, and Q3KSS2) are implicated in the viral vs. human peptide sharing. In particular, Table 1 highlights a heavy involvement of the Epstein–Barr nuclear antigen 1 (EBNA1) in the peptide sharing, with a clustering of identity regions in the gly-

cine-rich region (GRR) allocated along the NH2 terminus of the 641-aa-long EBV EBNA1 sequence.

Biologically, the 28 human proteins (ARI1B, BD1L1, BMP2K, CHD5, CHTOP, DIAP3, FRM4A, FUS, FZD8, JUND, LAR1B, LARP1, MBD2, MLL4, NOVA2, NOXA1, ONEC3, PCSK6, RBM26, RBM27, RS2, SFR15, SHSA7, SKOR2, SMD1, TSN3, UNG, and ZN579) implicated in the sharing exert critical functions in crucial processes such as myelination, chromatin remodeling, RNA splicing, and proteolysis. For example:

(1) The EBV BDLF2_{247–256}VYTLIPAVVI decapeptide is shared with human tetraspanin-3 (TSN3) that regulates the proliferation and migration of oligodendrocytes, a process essential for normal myelination and repair (Tiwari-Woodruff *et al.*, 2004).

(2) The GAGAGGGAGG decapeptide is repeated eight times in EBNA1 and is also present in the neuro-oncological ventral antigen 2 (NOVA2). NOVA2 is a neuron-specific splicing factor that regulates neuronal migration (Yano *et al.*, 2010), is necessary for physiologic motor neuron firing (Ruggiu *et al.*, 2009), and has been identified as a target in autoimmune motor disease (Yang *et al.*, 1998).

(3) The GAGGAGGAGAG 11-mer is present 12 times in EBNA1 and is shared with the human bi-orientation of chromosomes in cell division protein 1-like 1 (BD1L1) (Porter *et al.*, 2007).

(4) The EBV EBNA1_{314–325}GGGAGAGGAGAG 12-mer is shared with the human AT-rich interactive domain–containing protein 1B (ARI1B). ARI1B is involved in gene transcriptional activation and repression by chromatin remodeling (Santen *et al.*, 2012). Of note, ARI1B is important in human brain development and function in general and in the development of corpus callosum in particular (Halgren *et al.*, 2012). Indeed, ARI1B alterations are associated with mental retardation, impairments in adaptative behavior, and speech disorders with expressive speech more severely affected than receptive function (Santen *et al.*, 2012).

(5) The EBV EBNA1_{40–51}GRGRGRGRGRGRGG and the EBV EBNA2_{311–322}RGRGRGRGRGRGRG are common to small nuclear ribonucleoprotein Sm D1 (SMD1). SMD1 may act as a charged protein scaffold to promote snRNP assembly or strengthen snRNP–snRNP interactions through nonspecific electrostatic contacts with RNA. As a note of special importance, antinuclear antibodies with SMD1 specificity are developed in the autoimmune SLE disease (Poole *et al.*, 2006).

(6) The EBV EBNA1₂₀₂₋₂₁₄AGAGGAGGAGGAGGAG 13-mer is shared with proprotein convertase subtilisin/kexin type 6 (PCSK6). Of note, PCSK6 is associated with handedness in individuals with dyslexia (Scerri *et al.*, 2013).

(7) The GGRGRGGSGG decapeptide is present three times in EBNA1 and is shared with RNA-binding protein FUS (FUS). Accumulation of FUS protein as cytoplasmic inclusions in neurons and glial cells in the central nervous system is the pathological hallmark of amyotrophic lateral sclerosis as well as certain subtypes of frontotemporal lobar degeneration (Takeuchi *et al.*, 2013).

(8) The EBV EBNA2_{311–320}RGRGRGRGRG decapeptide is shared with the histone-lysine N-methyltransferase MLL4 or

EBV Protein*	Pos⁺	10-mer [‡]	11-mer [‡]	12-mer [‡]	13-mer [‡]	Human Proteins [§]
BDLF2	247	VYTLIPAVVI				TSN3
EBNA1	39			HGRGRGRGRGRG		RBM26
	40		GRGRGRGRGRG			CHTOP LAR1B [¶] MBD2 ^{‡‡} RS2 [¶]
	40			GRGRGRGRGGG		LARP1 SMD1 ZN579
	42	GRGRGRGRGG				RBM27
	92	GAGAGGAGAG				ARI1B
	93	AGAGGAGAGG				NOXA1
	96	GGAGAGGAGA				SKOR2
	96		GGAGAGGAGAG			ARI1B
	98	AGAGGAGAGG				NOXA1
	108	GAGAGGGAGG				NOVA2
	112		GGGAGGAGGAG			ONEC3
	113		GGAGGAGGAGG			FRM4A PCSK6 SHSA7
	114		GAGGAGGAGGA			FZD8
	114			GAGGAGGAGGAG		PCSK6
	115	AGGAGGAGGA				DND
	115		AGGAGGAGGAG			SHSA7
	116	GGAGGAGGAG				FRM4A ONEC3
	117		GAGGAGGAGAG			BD1L1
	129	GAGAGGGAGG				NOVA2
	133		GGGAGGAGGAG			ONEC3
	134	GGAGGAGGAG				FRM4A PCSK6 SHSA7
	135		GAGGAGGAGAG			BD1L1
	147	GAGAGGGAGG				NOVA2
	150		AGGGAGGAGAG			BMP2K.
	156	GAGAGGGAGG				NOVA2
	160		GGGAGGAGGAG			ONEC3
	161	GGAGGAGGAG				FRM4A PCSK6 SHSA7
	162		GAGGAGGAGAG			BD1L1
	174	GAGAGGGAGG				NOVA2
	177		AGGGAGGAGAG			BMP2K
	183	GAGAGGGAGG				NOVA2
	187		GGGAGGAGGAG			ONEC3
	188	GGAGGAGGAG				FRM4A PCSK6 SHSA7
	189		GAGGAGGAGAG			BD1L1
	199	GGGAGAGGAG				ARI1B
	202				AGAGGAGGAGGAG	PCSK6
	203	GAGGAGGAGG				FRM4A SHSA7
	203		GAGGAGGAGGA			FZD8
	204	AGGAGGAGGA				JUND
	204		AGGAGGAGGAG			SHSA7
	205	GGAGGAGGAG				FRM4A ONEC3

Pathogens and Disease (2013), 69, 205–212, © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved 207

ERV Date Deri Tendi <	Table 1 (continued)						
200 CAGGAGAGA CAGGAGAGAG CAGGAGAGAG CAGGAGAGAG CAGGAGAGAG CAGGAGAGAGA CAGGAGGAGAG CAGGAGAGAGA CAGGAGAGAGA CAGGAGGAGAG CAGGA	EBV Protein*	Pos [†]	10-mer [‡]	11-mer [‡]	12-mer [‡]	13-mer [‡]	Human Proteins [§]
11 00AM0GAAG 9000 211 00AM0GAAG 00A605AAG 9000 211 00A605AAG 00A605AAG 9000 211 00A605AAG 00A605AAG 9000 212 00A605AAG 00A605AAG 9000 213 00A605AAG 00A605AAG 9000 214 00A605AAG 00A605AAG 9000 215 00A605AAG 00A605AAG 9000 216 00A605AAG 00CAA605A 9000 216 00A605AAG 00CAA605A 9000 216 00A605AAG 00CAA605A 9000 216 00A605AAG 00CAA605A 9000 216 00A605AGAG 00CA605AGAG 9		206		GAGGAGGAGAG			BD1L1
211 Condecision Condecision Condecision Antile 211 Galadecision Galadecision Condecision		211	GGAGAGGAGA				SKOR2
131 0.46466A0.466 NOX 271 0.46466A0.466 0.0000.400 0.0000 272 0.46466A0.466 0.46466A0.46 0.0000 273 0.644666A0.46 0.46666A0.46 0.0000 283 0.644666A0.46 0.66666A0.46 0.0000 283 0.64666A0.46 0.66666A0.46 0.0000 284 0.64666A0.46 0.66666A0.46 0.0000 284 0.64666A0.46 0.66666A0.46 0.0000 284 0.66666A0.46 0.66666A0.46 0.0000 284 0.66666A0.46 0.66666A0.46 0.0000 284 0.66666A0.46 0.66666A0.46 0.0000 284 0.66666A0.46 0.66666A0.46 0.0000 284 0.666660A0.46 0.666660A0.46 0.0000 284 0.666660A0.46 0.666660A0.46 0.0000 284 0.666660A0.46 0.666660A0.46 0.0000 284 0.666660A0.46 0.666660A0.46 0.0000 284 0.6666660A0.46 0.666666		211		GGAGAGGAGAG			ARI1B
217 0.04040GA404 0.002 228 664064054 0.4640GA404 0.4640GA404 228 664064054 0.46640GA40 0.46640GA40 228 6640640540 0.46640GA40 0.46640GA40 229 6640640540 0.46640GA40 0.46640GA40 229 6640640540 0.46640GA40 0.46640GA40 230 640640GA40 0.46640GA40 0.46640GA40 230 640640GA40 0.46640GA40 0.46640GA40 230 640640GA40 0.46640GA40 0.46640GA40 231 400640GA40 0.46640GA40 0.46640GA40 232 400640GA40 0.46640GA40 0.46640GA40 233 400640GA40 0.46640GA40 0.46640GA40 234 400640GA40 0.46640GA40 0.46640GA40 231 4040340GA40 0.46640GA40 0.46640GA40 232 4040340GA40 0.46640GA40 0.46640GA40 233 4040340GA40 0.46640GA40 0.46640GA40 234 4040340GA40		213	AGAGGAGAGG				NOXA1
21 Conditional Condion Condional Condion<		217	GAGAGGGAGG				NOVA2
222 CGAGGAGGAS FIMA PCNG SHOT 223 GGAGAGAS GGAGAGAS GGAGAGAS BTII 224 GGAGAGAS GGAGGAGAS GGAGGAGAS BTII 224 GGAGAGAS GGAGGAGAS GGAGGAGAS COL 224 GGAGGAGAS GGAGGAGAS COL COL 224 AGAGGAGAS GGAGGAGAS COL COL 225 AGAGGAGAS GGAGGAGAS COL COL 226 AGAGGAGAS GGAGGAGAS COL COL 227 CAGGGAGAS GGAGGAGAS COL COL 228 AGAGGAGAS GGAGGAGAS GGAGGAGAS COL <t< td=""><td></td><td>221</td><td></td><td>GGGAGGAGGAG</td><td></td><td></td><td>ONEC3</td></t<>		221		GGGAGGAGGAG			ONEC3
223 GAGGAGAGA GAGGAGAGA BDU1 224 GAGGAGAGA GAGGAGAGA SCAGGAGAGA SCAG 226 AdAGGAGAGA GGAGGAGAGA SCAGGAGAGA SCAG 236 AdAGGAGAGA GGAGGAGAGA SCAGGAGAGA SCAG 236 AdAGGAGAGA GGAGGAGAGA SCAG SCAG 236 AdAGGAGAGA GGAGGAGAGA SCAG SCAG 236 AdAGGAGAGA GGAGGAGAGA GGAGGAGAGA SCAG 237 AdAGGAGAGA GGGGAGGAGA GGGGAGGAGA SCAG 237 AdAGGAGAGA GGGGAGGAGA GGGGGAGAGA SCAG 237 AdAGGAGAGA GGGGAGGAGA GGGGGAGAGA SCAG 236 AdAGGAGAGA GGGGAGGAGA GGGGGAGGAGA SCAGGAGGAGA 237		222	GGAGGAGGAG				FRM4A PCSK6 SHSA7
280 Conductands SOOR 281 Condicional SOOR SOOR 282 Condicional SOOR SOOR 283 Condicional Condicional SOOR 284 Condicional Condicional Condicional		223		GAGGAGGAGAG			BD1L1
200 Anticachadad Galacachada Mitile 201 Cadacachada Cadacachada Codacachada Codacachada 201 Cadacachada Cadacachada Cadacachada Codacachada 202 Cadacachada Cadacachada Cadacachada Codacachada 203 Cadacac		228	GGAGGGGGAGA				SKOR2
200 6006040405 NOX1 NOX1 236 6006040405 600604040 NOX1 236 600604040 600604040 NOX1 236 600604040 600604040 NOX1 236 600604040 600604040 NOX1 246 600604040 600604040 NOX1 246 600604040 600604040 NOX1 247 7606040640 600604040 NOX1 248 7606040640 6006060404 NOX1 277 600604040 6006060404 9011 277 6006060404 6006060404 9011 277 6006060404 6006060404 9011 277 6006060404 6006060404 9011 277 6006060404 6006060404 9011 278 60060604040 6006060404 9011 278 60060604040 6006060404 9011 278 600606060404 60060606040 9011 278 6006060604		228		GGAGAGGAGAG			ARI1B
281 GARAGRAGG ANIB NAIIB 282 GARAGRAGG GARAGRAGG NAIB 283 GARAGRAGG GARAGRAGG NAIB 284 AAGGAGAG GARAGRAGG NAIB 285 AAGGAGAGAG GAGAGGAGAG NAIB 286 AAGGAGAGAG GAGAGGAGAG NAIB 286 AAGGAGAGAG GAGAGGAGAG NAIB 286 AGGAGGAGAG GAGAGGAGAG NAIB 287 AGGAGGAGAG GAGAGGAGAG NAIB 288 AGGAGGAGAG GAGAGGAGAG NAIB 287 AGGAGGAGAG GAGAGGAGAG NAIB 288 AGGAGGAGAG GAGAGGAGAG NAIB 289 AGGAGGAGAG GAGAGGAGAG NAIB 281 AGGAGGAGAG AGGAGGAGAG NAIB 281 AGGAGGAGAG AGGAGGAGAG NAIB 281 AGGAGGAGAG AGGAGGAGAG NAIB 281 AGGAGGAGAG AGGAGGAGAG NAIB 281 AGGAGGAGA		230	AGAGGAGAGG				NOXA1
28 GAAGGAAGA NOXAI 28 GAAGGAAGA GAAGGAAGA SCORE 28 KAAGGAAGAG GAAGGAAGAG SCORE 26 KAAGGAGGAG GAGGAGGAGA CAGGAGGAGA 28 KAAGGAGGAG GAGGAGGAGA CAGGAGGAGA 28 KAAGGAGGAG GAGGAGGAGA CAGGAGGAGA 28 KAAGGAGGAG GAGGAGGAGA CAGGAGGAGA 28 AGAGGAGGAG GAGGAGGAGAG GAGGAGGAGA 27 GACGAGGAGAG GAGGAGGAGAG CAGGAGGAGAG 28 AGAGGAGGAG AGGGAGGAGAG GAGGAGGAGAG 29 AGAGGAGGAGA GAGGAGGAGAG GAGGAGGAGAG 29 AGAGGAGGAG GAGGAGGAGAG GAGGAGGAGAG 29 AGAGGAGGAGA GAGGAGGAGAG GAGGAGGAGAG 29 AGAGGAGGAGA GAGGAGGAGAG GAGGAGGAGAG 29 AGAGGAGGAGA GAGGAGGAGAG GAGGAGGAGAG 29 GAGGAGGAGAG GAGGAGGAGAG GAGGAGGAGAG 29 GAGGAGGAGAG GAGGAGGAGAG		234	GAGAGGAGAG				ARI1B
28 GGAGGAGAG SCORE 20 AGAGGAGAG GGAGGAGAG SCORE 26 AGAGGAGAG GGAGGAGAG SCORE 26 AGAGGAGAG GGAGGAGAG SCORE 26 AGAGGAGAG GGAGGAGAG SCORE 26 AGAGGAGAG GAGGAGGAG SCORE 27 GAGGAGGAG GAGGAGGAG SCORE 28 AGAGGAGAG GAGGAGGAG GAGGAGGAG 27 GAGGAGGAG GAGGAGGAG GAGGAGGAG 28 GAGGAGGAG GAGGAGGAG GAGGAGGAG 28 GAGGAGGAG GGGGAGGAG GAGGAGGAG 29 GAGGAGGAG GGGGAGGAG GGGGAGGAG 29 GAGGAGGAG GGGGAGGAG GGGGAGGAG 29 GAGGAGGAGA GGGGAGGAGA GGGGAGGAGA 29 GAGGAGGAGAG GGGGAGGAGAG GGGGAGGAGA 29 GAGGAGGAGAG GGGGAGGAGA GGGGAGGAGA 29 GGGGAGGAGAG GGGGAGGAGAG GGGGGAGGAGA 29		235	AGAGGAGAGG				NOXA1
28 Cidadedadd Mills 24 Adadadad Cidadedad Noxi 24 Adadadad Cidadedad Noxi 24 Adadadad Cidadedad Noxi 24 Adadedad Cidadedad Noxi 25 Adadedad Cidadedad Noxi 261 Adadedad Cidadedad Novi 271 Gadadedad Gadeadada Novi 272 Gadadedad Gadeadada Novi 273 Gadadedad Gadadedada Gadeadada 280 Gadadadada Gadadadada Novi<		238	GGAGAGGAGA				SKOR2
240 6.406.64.64.64 NOX41 245 4.64.66.46.64.64 6.46.66.46.64.64 PCSK6 PCSK6 246 A.64.66.46.64.64 6.46.66.46.64.64 PCSK6 PCSK6 PCSK6 257 A.64.66.46.64.64 6.46.66.46.64 PCSK6 PCSK6 PCSK6 261 A.64.66.46.64 6.46.64.64.64 PCSK6 PCSK6 PCSK6 277 G.46.66.66.64 G.46.66.66.64 PCSK6 PCSK6 PCSK6 287 A.64.66.66.64 G.46.66.66.64 BD11 PCSK6 PCSK6 288 A.64.66.66.64 G.46.66.66.64 BD11 PCSK6 PCSK6 288 A.64.66.66.64 G.46.66.66.64 BD11 PCSK6 PCSK6 288 A.64.66.66.64 G.46.66.66.64 G.46.66.66.64 PCSK6 PCSK6 288 A.66.66.66.64 G.46.66.66.64 PCSK6 PCSK6 PCSK6 211 G.66.66.66.64 G.66.66.66.64 G.66.66.66.64 PCSK6 PCSK6 212 G.66.66.66.64		238		GGAGAGGAGAG			ARI1B
245 0.64.0G.66.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G		240	AGAGGAGAGG				NOXA1
246 CadGaGGAGAG BDIL 247 CaGGAGGAGAG GAGGAGGAGA BDIL 247 CaGGAGGAGAG GAGGAGGAGAG BDIL 267 AGAGGAGAG GAGGAGGAGA BDIL 277 GAGGAGGAGA GAGGAGGAGA BDIL 287 GAGGAGGAG GAGGAGGAGA BDIL 287 GAGGAGGAG GAGGAGGAGA BDIL 287 GAGGAGGAG GAGGAGGAGA BDIL 288 AGAGGAGGAG GAGGAGGAGA BDIL 289 AGAGGAGGAG GAGGAGGAGA BDIL 289 AGAGGAGGAG GAGGAGGAGAG BDIL 280 AGAGGAGGAG GAGGAGGAGAG BDIL 281 AGAGGAGGAGA GAGGAGGAGAG BDIL 281 AGAGGAGGAGA GAGGAGGAGAG BDIL 281 AGAGGAGGAGAG GAGGAGGAGAG BDIL 313 AGAGGAGGAGAG GAGGAGGAGAG BDIL 314 GAGGAGGAGAG GAGGAGGAGAG BDIL 315 GGAGGAGGAG		245	AGAGGAGGAG				PCSK6
253 0.40.60.60.60 PCSK6 PCSK6 264 3.64.60.60.60 6.66.60.60.60 BD1.1 277 2.77 6.46.60.60.60 BD1.1 287 3.64.60.60.60 6.66.60.60.60 BD1.1 287 3.64.60.60.60 6.66.60.60.60 BD1.1 287 3.64.60.60.60 3.66.60.60.60 BD1.1 288 3.64.60.60.60 6.66.60.60.60 BD1.1 289 3.66.60.60.60 6.66.60.60.60 BD1.1 281 3.66.60.60.60 6.66.60.60.60 BD1.1 313 3.66.60.60.60 6.66.60.60.60 BD1.1 314 3.66.60.60.60 6.66.60.60.60 BD1.1 315 6.66.66.60.60 6.66.66.60.60 BD1.1 316 6.66.66.60.60 6.66.66.60.60 BD1.1 317 6.66.66.60.60 6.66.66.60.60 BD1.1 318 6.66.66.60.60 6.66.66.60.60 BD1.1 317 6.66.66.60.60 6.66.66.60.60 BD1.1 316 6.66.66.60.60		246		GAGGAGGAGAG			BD1L1
254 GAGGAGAG GAGGAGAG DILI 201 AGAGAGAG GAGGAGAG BDILI 201 GAGGAGAG GAGGAGAG BDILI 201 GAGGAGAG GAGGAGAG BDILI 201 GAGGAGAGA GAGGAGAGA BDILI 201 GAGGAGAGA GAGGAGAGA BDILI 201 GAGGAGAGA GAGGAGAGA BDILI 202 AGAGAGCAG GAGGAGAGA BDILI 203 AGAGAGCAG GAGGAGAGAG BDILI 204 GAGGAGGAGAG GAGGAGAGAG BDILI 203 AGAGGAGAGA GAGGAGAGAG BDILI 204 GAGGAGGAGAG GAGGAGAGAG BDILI 214 GAGGAGAGAG GAGGAGAGAG GAGGAGGAGAG 215 GGAGAGAGAG GAGGAGAGAG GAGGAGAGAG 216 GAGGAGAGAGA GAGGAGAGAGA BDILI 217 GGAGAGAGAG GAGGAGAGAG GAGGAGAGAG 218 GAGGAGAGAG GAGGAGAGAGA GAGGAGAGAG		253	AGAGGAGGAG				PCSK6
281 AGAGGAGAG PCSK6 PCSK6 277 GAGGAGAG GAGGAGAG PCSK6 287 AGAGGAGAG AGGGAGAGAG NOVA2 287 AGAGGAGAG AGGGAGAGAG NOVA2 287 AGAGGAGAG AGGGAGAGAG PCSK6 288 AGAGGAGAG GAGGAGAGAG PCSK6 289 AGAGGAGAG GAGGAGAGAG PCSK6 286 AGAGGAGAG GAGGAGAGAG PCSK6 288 AGAGGAGAG GAGGAGAGAG PCSK6 303 AGAGGAGAGA GAGGAGAGAG PCSK6 314 GAGGAGAGAG GAGGAGAGAG PCSK6 314 GAGGAGAGAG GAGGAGAGAG PCSK6 315 GGAGGAGAGA GAGGAGAGAG PCSK6 316 GGAGGAGAGA GAGGAGAGAG PCSK6 317 AGAGGAGAGAG GAGGAGAGAGA PCSK6 318 GGAGGAGAGA GAGGAGAGAGA PCSK6 319 GGAGGAGAGA GAGGAGAGAGA PCSK6 326		254		GAGGAGGAGAG			BD1L1
262 GGGGGGGGG GGGGGGGGG DIL1 277 GGGGGGGG GGGGGGGGG NOV2 287 AGGGGGGG GGGGGGGGG NOV2 287 AGGGGGGG GGGGGGGGG NOV2 288 AGGGGGGGG GGGGGGGGG NOV2 289 AGGGAGGAG GGGGGGGGG NOV2 289 AGGGAGGAG GGGGGGGGGG NOV2 289 AGGGAGGAG GGGGGGGGGG NOV2 280 AGGGAGGAG GGGGGGGGGG NOV2 303 AGGGAGGAG GGGGGGGGGG NOV2 314 GGGGGGGGGG GGGGGGGGGG NOV2 314 GGGGGGGGGG GGGGGGGGGG NOV2 315 GGGGGGGGGG GGGGGGGGGG NOV3 316 GGGGGGGGGG GGGGGGGGGGGGG NOV3 317 AGGGGGGGGG GGGGGGGGGGG NOV3 318 GGGGGGGGGG GGGGGGGGGG NOV3 311 GGGGGGGGG NOV3 NOV3 311 GGGGGGGGGG		261	AGAGGAGGAG				PCSK6
277 GaGaGadad Nova2 280 AgaGaGada Nova2 287 AgaGaGada Nova2 287 AgaGaGada Pcsk6 286 GaGaGaGada Pcsk6 286 GaGaGaGada BD1L1 296 GaGaGaGada BD1L1 296 GaGaGaGada BD1L1 203 AgaGaGada GaGaGaGada 304 GaGaGaGada GaGaGaGada 317 AgaGaGada BD111 318 GaGaGaGada BD111 317 AgaGaGaGada BD111 318 GaGaGaGada BD111 317 AgaGaGaGada BD111 328 GaGaGaGada BD111 327 GaGaGaGada BD111 328 GaGaGaGada BD111 327 GaGaGaGada BCB 328 GaGaGaGada BCB 331 AgaGaGaGada BCB 331 GaGaGaGada BCB 331 G		262		GAGGAGGAGAG			BD1L1
280 AGGGAGGAG BMP2K 287 AGAGGAGGAG PCSK6 288 GAGGAGGAG PCSK6 286 GAGGAGGAG GAGGAGGAG 286 GAGGAGGAG PCSK6 295 AGAGGAGGAG GAGGAGGAG 296 GAGGAGGAG GAGGAGGAG 297 GAGGAGGAG GAGGAGGAG 308 AGAGGAGGAG GAGGAGGAG 314 GAGGAGGAG GAGGAGGAG 315 GGAGGAGGA GAGGAGGAGG 316 GGAGGAGGA GAGGAGGAGG 317 AGAGGAGGAG ARIB 318 GGAGGAGGG GGGAGGAGGG 319 GGAGGAGGG NOXAI 210 GGAGGAGGG NOXAI 221 GGAGGAGGG GGAGGAGGG 323 GGAGGAGGG NOXAI 333 GGAGGAGGG NOXAI 343 GGAGGAGGG NOXAI 344 GAGGAGGGGG NOXAI 351 GACGAGGGGG NOXAI		277	GAGAGGGAGG				NOVA2
287 AGAGGAGGAG PCSK6 288 CAGGAGGAG GAGGAGGAG 286 CAGGAGGAG BDIL1 295 AGAGGAGGAG GAGGAGGAG 296 CAGGAGGAG GAGGAGGAG 203 AGAGGAGGAG GAGGAGGAG 204 CAGGAGGAG GAGGAGGAG 304 CACACAGGAG CAGGAGGAG 315 CGAGAGGAGG CAGGAGGAGG 316 CGAGAGGAGGA GGAGGAGAG 317 AGAGGAGGG CACACAGGAGAG 318 CGAGGGGGGG CACACAGGAGAG 311 CGAGGGGGG CHDS 311 CAPPPPPP CHDP MLL4 RBM26 311 CHDP MLL4 RBM26 CHDP MLL4 RBM26		280		AGGGAGGAGAG			BMP2K
28 GAGGAGAGA BD1L1 296 AGAGGAGAG EAGGAGGAG 298 AGAGGAGAG EAGGAGGAGA 298 AGAGGAGAG EAGGAGGAGA 298 AGAGGAGAG EAGGAGGAGA 299 AGAGGAGAG EAGGAGGAGA 303 AGAGGAGAG GAGGAGGAGA 314 AGAGGAGAGA EAGGAGGAGA 315 GGAGAGGAGA GAGGAGGAGA 317 AGAGGAGGAG ARIIB 317 AGAGGAGGAG ARIIB 317 AGAGGAGGAGA GAGGAGGAGA 318 GGAGGAGGAG ARIIB 317 AGAGGAGGAG ARIIB 318 GGAGGAGGAG ARIIB 317 AGAGGAGGAG ARAIB 318 GGAGGAGGAG ARIB 329 GGAGGAGGGG AGAGGAGGAG 321 SAAAAAAV AAAAAAV 51 GAPPPPPPP AAAAAV 51 GAPPPAPA AAAAAV 51 BCACPAGGAG AAAAAAV		287	AGAGGAGGAG				PCSK6
295 AGAGGAGGAG PCSK6 296 GAGGAGGAG BDIL1 291 GAGGAGGAG PCSK6 303 AGAGGAGGAG BDIL1 314 AGAGGAGGAG BDIL1 315 GGAGGAGAGA GAGGAGGAG 317 AGAGGAGGAG AR11B 317 AGAGGAGGAG AR11B 317 AGAGGAGAGG AR11B 317 AGAGGAGAGG AR11B 317 AGAGGAGGAG AR11B 318 GGAGGAGGAG AR11B 317 AGAGGAGAGG AR11B 318 AGAGGAGAGG AR11B 311 BGAGAGGAGG BAAAAAVA 57 GVPPPPPPP FUS 51 GVPPPPPPP FUS 51 BGAGAGGAG CHD5 51 BCNP FUS		288		GAGGAGGAGAG			BD1L1
296 GaGaGaGaG BD1L1 303 303 GaGaGaGaG PCSK6 304 314 PCSK6 BD1L1 315 GaGaGaGaG GaGaGaGaG BD1L1 316 GaGaGaGaG GaGaGaGaG BD1L1 317 AGAGGAGAG GaGaGaGaG BD1L1 317 AGAGGAGAG GaGaGaGaG NoxA1 317 AGAGGAGAG GaGaGaGaG NoXA1 317 AGAGGAGAG AGAGGAGAG SKOR2 317 AGAGGAGAG NOXA1 NOXA1 327 GGAGAGGAGG SKOR2 NOXA1 328 GGAGAGGAGG SKOR2 NOXA1 329 GGAGAGGAGG SKOR2 NOXA1 321 IS01 SAAAAAAVA SAAAAAVA CHD5 57 GVPPPPPPP SVDP CHD5 CHD5 51 GVPPOPPAP AGAGGAGGAG CHD5 CHD5		295	AGAGGAGGAG				PCSK6
303 AGAGGAGGA PCSK6 304 CSK6 BD1L1 305 GGAGGAGAG GAGGAGGAG 316 GGAGGAGAG GGGGAGGAG 317 AGAGGAGGAG GGGGGGGAGG 317 AGAGGAGGAG GGGGGGGGGGG 317 AGAGGAGGG SKOR2 317 AGAGGAGGG NOXA1 327 GGGAGGGGGG NOXA1 328 GGGAGGGGG NOXA1 335 GGGAGGGGG NOXA1 336 GGAGGGGGG NOXA1 337 GGAGGGGGG NOXA1 338 GGAGGGGGG NOXA1 333 GGAGG		296		GAGGAGGAGAG			BD1L1
304 BD1L1 315 GGGAGGAGG BD1L1 316 GGAGGAGGG AR1B 317 AGAGGAGGG SKOR2 317 AGAGGAGGG SKOR2 317 AGAGGAGGG SKOR2 317 AGAGGAGGG NOXA1 327 GGRGGGGGG SKOR2 318 GGRGGGGGG NOXA1 327 GGRGGGGGG SKOR2 328 GGRGGGGGG NOXA1 335 GGRGGGGGG SKOR2 336 GGRGGGGGG SKOR2 337 GGRGGGGGG SKOR2 338 GGRGGGGGG SKOR2 333 GGRGGGGGG SKOR2 333 GGRGGGGGG SKOR2 333 GGRGGGGGGG SKOR2 333 GGRGGGGGG GGRGGGGG 311 RGRGRGGG STOR2 311 RGRGRGGG STOR2 311 RGRGRGGG STOR2		303	AGAGGAGGAG				PCSK6
314 GGGAGGAGAG ARI1B 315 GGAGGAGAG SKOR2 317 AGAGGAGAG NOXA1 327 GGRGRGGGGG NOXA1 328 GGRGRGGGGG NOXA1 329 GGRGRGGGGG SKOR2 335 GGRGRGGGG NOXA1 335 GGRGRGGGG SKOR2 343 GGRGRGGGG SKOR2 343 GGRGRGGGG SKOR2 343 GGRGRGGGG SKOR2 343 GGRGRGGGG SKOR2 344 GGRGRGGGG SKOR2 345 GGRGRGGGG SKOR2 346 GGRGRGGGG SKOR2 343 GGRGRGGGG SKOR2 344 GGRGGGGG SKOR2 345 GGRGRGGGG SKOR2 346 GGRGGGGGG SKOR2 347 GVPPPPPP SKOR2 348 GGRGGGGGG SKOR2 349 GGRGGGGGG SKOR2 341 GGRGGGGG SKOR2 341 RGRGRGGG SKOR2 <td< td=""><td></td><td>304</td><td></td><td>GAGGAGGAGAG</td><td></td><td></td><td>BD1L1</td></td<>		304		GAGGAGGAGAG			BD1L1
315 GGAGAGGAG SKOR2 317 AGAGAGAGG NOXA1 317 AGAGGAGGG NOXA1 327 GGRGRGGGGG NOXA1 328 GGRGRGGGGG NOXA1 335 GGRGRGGGG NOXA1 335 GGRGRGGGG NOXA1 336 GGRGRGGGG NOXA1 337 GGRGRGGGG NOXA1 338 GGRGRGGGG NOXA1 310 FU SAAAAAVA 57 GVPPPPPPP CHD5 311 RGRGRGGG CHD6 311 RGRGRGGG CHD6		314			GGGAGAGGAGAG		ARI1B
317 AGAGGAGG NOXA1 327 GGRGRGGGGG EUS 325 GGRGRGGGGG EUS 335 GGRGRGGGGG EUS 343 GGRGRGGGG EUS 271 SAAAAAVA ENA2 311 RGRGRGGG CHDB 311 RGRGRGGG CHDB 311 RGRGRGGG CHDB		315	GGAGAGGAGA				SKOR2
327 GGRGRGGGG FUS. 335 GGRGRGGGG FUS. 335 GGRGRGGGG FUS. 343 GGRGRGGGG FUS. DEN 1501 SAAAAAAVA 57 GVPPPPPPP CHD5 11 RGRGRGGG CHTOP MLL4 RBM26		317	AGAGGAGAGG				NOXA1
335 GGRGRGGGG FUS 343 GGRGRGGGGG FUS 343 GGRGRGGGGG FUS 343 GGRGRGGGGG CHD5 25 GVPPPPPPP CHD5 311 RGRGRGGG CHTOP MLL4 RBM26		327	GGRGRGGSGG				FUS.
343 GGRGRGGGG FUS DEN 1501 SAAAAAAVA CHD5 EBNA2 57 GVPPPPPPP DIAP3 SFR15 311 RGRGRGRGG CHTOP MLL4 RBM26		335	GGRGRGGSGG				FUS
DEN 1501 SAAAAAAVA CHD5 EBNA2 57 GVPPPPPPP DIAP3 SFR15 311 RGRGRGRGG CHTOP MLL4 RBM26		343	GGRGRGGSGG				FUS
EBNA2 57 GVPPPPPPP DIAP3 SFR15 311 RGRGRGRGG	DEN	1501	SAAAAAAVA				CHD5
311 RGRGRGRG	EBNA2	57	GVPPPPPPP				DIAP3 SFR15
		311	RGRGRGRGRG				CHTOP MLL4 RBM26

208 Pathogens and Disease (2013), 69, 205–212, © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved

Table 1 (continued)						
EBV Protein*	Pos⁺	10-mer [‡]	11-mer [‡]	12-mer [‡]	13-mer [‡]	Human Proteins [§]
	311 312 313	RGRGRGRG	GRGRGRGRG	RGRGRGRGRGRG		LAR1B ¹ LARP1 ¹ MBD2 ¹⁺ RS2 ¹ SMD1** ZN579 ⁺⁺ CHTOP RBM26 MLL4
Q3KSS2	84			KVVILGQDPYHG		UNG
The entire EBV pro matching analysis t	teome, excepter to the human pro	d EBV IL-10H, for a total of oteome by using PIR pepti	f 68 proteins was dissected into ide match program (pir.georgetc	overlapping decapeptides shifte wn.edu/pirwww/search/peptide.s	d by one residue. The decapeptic shtml) (Wu <i>et al.</i> , 2003).	les were used as probes in peptide
TEBV proteins give.	n as UniProtNb/ EBV protein seç	'owiss-Prot entry name; juence;				
‡aa peptide sequer	nces given in 1-l	letter code;				
§human proteins in	volved in the pel	ptide overlap given as UniF	^o rotKB/Swiss-Prot entry name. E	3iological function of the 28 hum	an proteins (in alphabetical order)): ARI1B. Involved in transcriptional
activation and repre	ession of select o	genes by chromatin remod∈	eling. Belongs to the neural prog	enitors-specific chromatin remoc	leling complex. BD1L1. Biorientati	on of chromosomes in cell division.
BMP2K. May be inv	volved in osteobl	last differentiation. CHD5. [Development of the nervous sys	tem. CHTOP. A role in the active	tion of estrogen receptor target g	enes and in silencing of fetal globin
genes. DIAP3. Bind	Is to GTP-bound	form of Rho and to profilin	n. Promotes actin polymerization	. Required for cytokinesis, stress	s fiber formation, and transcription	al activation of the serum response
iactor. FHIM4A. He intercellular transmi	gulates epimella ission of polarity	ti polarity. FUS. KINA-bindir information during tissue n	ng protein mat regulates transcr mombodenesis, JUND, Transcrit	Iption, splicing and minima trans ation factor binding AP-1 sites. I	port. FZD8. Receptor for writ pro AR1B. RNA-binding protein. MBF	otentis. Involved in transduction and 22. Binds CpG islands in promoters
where the DNA is n	nethylated at pos	sition 5 of cytosine. LARP1.	. Facilitates the synthesis of prot	eins required for cellular remode	elling and migration. MLL4. Methyl	ates 'Lys-4' of histone H3. NOVA2.
Regulates RNA sp	viicing or metable	olism in a specific subset	of developing neurons. NOXA	1. Activator of superoxide-prod	ucing NADPH oxidase. ONEC3.	Transcriptional activator. PCSK6.

Represents an endoprotease activity within the constitutive secretory pathway. RBM26. RNA-binding protein. RBM27. RNA-binding protein. RS2. Participates in aminoacyl-tRNA binding to the ribosome. SFR15. Links transcription and pre-mRNA processing. SHSA7. Transmembrane adaptor. SKOR2. Has transcriptional repressor activity. Acts as a TGF-beta antagonist in the nervous system. SMD1. Acts as a charged protein scaffold to promote or strengthen snRNP-snRNP interactions. TSN3. Proliferation and migration of oligodendrocytes. UNG. Excises uracil residues from the DNA ZN579. May be involved in transcriptional regulation.

 $[],^{**}, \dagger \uparrow, \ddagger$ refer to peptide occurrences repeated 3, 4, 5, and 6 times, respectively.

myeloid/lymphoid or mixed-lineage leukemia protein 4. MLL4 is a crucial player in cell viability and cell-cycle progression and is critical for tumor growth *in vivo* (Ansari *et al.*, 2012).

(9) The EBV Q3KSS2_{84–95}KVVILGQDPYHG 12-mer is also present in human uracil–DNA glycosylase (UNG). UNG excises uracil residues from the DNA that can arise as a result of misincorporation of dUMP residues by DNA polymerase or due to deamination of cytosine. Defects in UNG are a cause of immunodeficiency with hyper-IgM type 5 (Kavli *et al.*, 2005).

In summary, we find a significant peptide sharing between EBV and the human proteome that involves even peptides 13-mer long and is predominant at level of EBV EBNA1 protein. In fact, 42 of the total 47 decapeptides shared between EBV and human proteins are derived from EBNA1 (Table 1). Such a peptide commonality might explain the immunoevasive properties of EBNA1 protein, a viral antigen that has been reported to go undetected by the cell-mediated immune system (Münz, 2004). Indeed, it seems logical to hypothesize that human immunotolerance mechanism(s) should prevent attacks against a protein, EBNA1, endowed with such a high level of sequence identity to human proteins. However, in parallel, it has to be observed that EBNA1 antigen is also one of the most frequently recognized EBV antigens for CD4+ helper T cells (Long et al., 2005), thus representing a prime target for T-cell-based immunotherapy (Tsang et al., 2006). Interestingly, mapping of CD4+ epitopes within the primary sequences of EBNA1 reveals a specific epitope location in the EBNA1 COOH region (Long et al., 2005; Tsang et al., 2006). In molecular terms, data from Table 1 favor the view of EBNA1 protein sequence as hosting antigenicity and immunotolerance in two spatially distinct domains, with the antigenic portion allocated along the COOH terminus and the potentially immunotolerogenic GRR confined in the NH2 region. Accordingly, a thorough search through IEDB database (Peters et al., 2005) highlights that the EBNA1 COOH terminus allocates 74 T-cell epitopes, while EBNA1 NH2 terminus GRR presents only one epitope (AGAGGGAGGAGAGA, IEDB ID: 1432) (Petersen et al., 1989) comprehending a 11-mer sequence reported in Table 1 (AGGGAGGAGAG).

This study suggests a role for EBNA1 GRR in immunoevasion and, in addition, may offer hints to explore the molecular basis underlying the delayed development of CD4+ T cell and humoral immune responses against EBV EBNA1 (Hislop et al., 2007; Long et al., 2013). Indeed, Levitskaya et al. (1995) demonstrated that the GRR allocated in the NH2 terminus of EBNA1 interferes with antigen processing and MHC class I-restricted presentation, possibly by inhibiting ubiquitin-/proteasome-dependent protein degradation (Levitskaya et al., 1997). In parallel, Yin et al. (2003) showed that the GRR inhibits EBNA1 mRNA translation and proposed that minimizing translation of the EBNA1 transcript, cells expressing EBNA1 avoid cytotoxic T-cell recognition. However, the molecular mechanism by which the GRR repeat inhibits ubiquitin-/proteasome-dependent degradation remained unexplained (Levitskaya et al., 1997). As a matter of fact, GRRs are critical domains in proteins such as TAR DNA-binding protein 43 (TDP-43), heterogeneous nuclear ribonucleoprotein A1 (ROA1), and the above-mentioned RNA-binding protein FUS (Rogelj *et al.*, 2011). TDP-43, ROA1, and FUS are proteins crucially involved in the regulation of different steps of gene expression, including transcription, splicing, mRNA transport, and translation (Strong *et al.*, 2007; Bekenstein & Soreq, 2012; Dormann and Haass, 2013). Then, it can be hypothesized that the EBNA1 GRR might interfere with GRRs present in host proteins, thus subverting crucial cellular functions, such as transcription and translation.

In the present context, it is also noteworthy that the extent and significance of the peptide overlap between EBNA1 and human proteins are even more relevant following sequence identity analyses using short peptide modules as scanning probes, being thousand the EBV matches in the human proteome (Kanduc et al., 2008). As an example, the EBV EBNA1 heptapeptide GAGAGGG occurs 15 times along the NH2-terminal domain of EBV EBNA1 (http://www.uniprot. org/uniprot/Q3KSS4). Of interest, the same heptapeptide GAGAGGG occurs in the human nuclear factor NF-kappa-B p105 (NFkB1) protein, where the Gly-rich heptapeptide GAGAGGG functions as a processing signal for the generation of the p50 subunit (Lin & Ghosh, 1996; Orian et al., 1999). Hence, it might be postulated that the multiple EBNA1 GRRs could compete for the proteolytic reaction of NFkB1, a transcriptional factor crucial in the activation and function of mature B cell (Pohl et al., 2002; Ruland & Mak, 2003).

More in general, the fact that short aa modules such as pentapeptides can represent minimal functional determinants in biological interactions and immune recognition (Kanduc, 2012a, b; Kanduc, 2013) implies a wide array of physio(patho)logical viral-host relationships, being massive the level of peptide overlap between EBV and human proteins at the 5-mer level (Kanduc et al., 2008). Hence, data reported in Table 1 not only might help understand EBV escape from immunosurveillance, but could also contribute to unfold the still obscure links between EBV infection and associated cancer diseases and autoimmune disorders (Farrell & Jarrett, 2011; Niller et al., 2011; Draborg et al., 2012; Tselis, 2012). Finally, the present phenetic analyses might open the way to innovative therapeutic approaches to fight/eradicate EBV infection and related pathologic sequelae (Kanduc et al., 2007; Lucchese et al., 2011; Capone et al., 2013).

Authors' Contributions

All authors contributed to the computational analysis. D.K. proposed the original idea, interpreted the data, developed the research project, and wrote the manuscript. All authors discussed the results, and commented and revised the manuscript.

Acknowledgement

The authors declare that there are no conflict of interests.

References

- Ansari KI, Kasiri S, Mishra BP & Mandal SS (2012) Mixed lineage leukaemia-4 regulates cell-cycle progression and cell viability and its depletion suppresses growth of xenografted tumour *in vivo*. *Br J Cancer* 107: 315–324.
- Bekenstein U & Soreq H (2012) Heterogeneous nuclear ribonucleoprotein A1 in health and neurodegenerative disease: from structural insights to post-transcriptional regulatory roles. *Mol Cell Neurosci* DOI: pii: S1044-7431(12)00212-6.
- Capone G, Lucchese G, Calabrò M & Kanduc D (2013) West Nile virus diagnosis and vaccination: using unique viral peptide sequences to evoke specific immune responses. *Immunopharmacol Immunotoxicol* 35: 64–70.
- Cesarman E (2002) Epstein–Barr virus (EBV) and lymphomagenesis. *Front Biosci* 7: e58–e65.
- Dormann D & Haass C (2013) Fused in sarcoma (FUS): an oncogene goes awry in neurodegeneration. *Mol Cell Neurosci* DOI:pii: S1044-7431(13)00048-1.
- Draborg AH, Duus K & Houen G (2012) Epstein–Barr virus and systemic lupus erythematosus. *Clin Dev Immunol* 2012: 370516.
- Farrell K & Jarrett RF (2011) The molecular pathogenesis of Hodgkin lymphoma. *Histopathology* 58: 15–25.
- Gourzones C, Barjon C & Busson P (2012) Host-tumor interactions in nasopharyngeal carcinomas. *Semin Cancer Biol* 22: 127–136.
- Halgren C, Kjaergaard S, Bak M *et al.* (2012) Corpus callosum abnormalities, intellectual disability, speech impairment, and autism in patients with haploinsufficiency of ARID1B. *Clin Genet* 82: 248–255.
- Hislop AD, Taylor GS, Sauce D & Rickinson AB (2007) Cellular responses to viral infection in humans: lessons from Epstein–Barr virus. *Annu Rev Immunol* 25: 587–617.
- Jochum S, Moosmann A, Lang S, Hammerschmidt W & Zeidler R (2012) The EBV immunoevasins vIL-10 and BNLF2a protect newly infected B cells from immune recognition and elimination. *PLoS Pathog* 8: e1002704.
- Kalla M & Hammerschmidt W (2012) Human B cells on their route to latent infection–early but transient expression of lytic genes of Epstein–Barr virus. *Eur J Cell Biol* 91: 65–69.
- Kanduc D (2012a) Homology, similarity, and identity in peptide epitope immunodefinition. *J Pept Sci* 18: 487–494.
- Kanduc D (2012b) Peptide cross-reactivity: the original sin of vaccines. *Front Biosci* 4: 1393–1401.
- Kanduc D (2013) Pentapeptides as minimal functional units in cell biology and immunology. *Curr Protein Pept Sci* 14: 111–120.
- Kanduc D, Lucchese A & Mittelman A (2007) Non-redundant peptidomes from DAPs: towards "the vaccine"? *Autoimmun Rev* 6: 290–294.
- Kanduc D, Stufano A, Lucchese G & Kusalik A (2008) Massive peptide sharing between viral and human proteomes. *Peptides* 29: 1755–1766.
- Kavli B, Andersen S, Otterlei M, Liabakk NB, Imai K, Fischer A, Durandy A, Krokan HE & Slupphaug G (2005) B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil. J Exp Med 201: 2011–2021.
- Klein G, Klein E & Kashuba E (2010) Interaction of Epstein–Barr virus (EBV) with human B-lymphocytes. *Biochem Biophys Res Commun* 396: 67–73.
- Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, Klein G, Kurilla MG & Masucci MG (1995) Inhibition of antigen processing by the internal repeat region of the Epstein–Barr virus nuclear antigen-1. *Nature* 375: 685–688.

- Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A & Masucci MG (1997) Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein–Barr virus nuclear antigen 1. *P Natl Acad Sci USA* 94: 12616–12621.
- Lin L & Ghosh S (1996) A glycine-rich region in NF-kappaB p105 functions as a processing signal for the generation of the p50 subunit. *Mol Cell Biol* 16: 2248–2254.
- Long HM, Haigh TA, Gudgeon NH *et al.* (2005) CD4+ T-cell responses to Epstein–Barr virus (EBV) latent-cycle antigens and the recognition of EBV-transformed lymphoblastoid cell lines. *J Virol* 79: 4896–4907.
- Long HM, Chagoury OL, Leese AM, Ryan GB, James E, Morton LT, Abbott RJ, Sabbah S, Kwok W & Rickinson AB (2013) MHC II tetramers visualize human CD4+ T cell responses to Epstein– Barr virus infection and demonstrate atypical kinetics of the nuclear antigen EBNA1 response. *J Exp Med* 210: 933–949.
- Lucchese G, Stufano A & Kanduc D (2009) Proteome-guided search for influenza A B-cell epitopes. *FEMS Immunol Med Microbiol* 57: 88–92.
- Lucchese G, Stufano A & Kanduc D (2011) Searching for an effective, safe and universal anti-HIV vaccine: finding the answer in just one short peptide. *Self Nonself* 2: 49–54.
- Moore KW, Vieira P, Fiorentino DF, Trounstine ML, Khan TA & Mosmann TR (1990) Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein–Barr virus gene BCRFI. *Science* 248: 1230–1234.
- Moore KW, de Waal Malefyt R, Coffman RL & O'Garra A (2001) Interleukin-10 and the interleukin-10 receptor. *Annu Rev Immunol* 19: 683–765.
- Münz C (2004) Epstein-barr virus nuclear antigen 1: from immunologically invisible to a promising T cell target. *J Exp Med* 199: 1301–1304.
- Natale C, Giannini T, Lucchese A & Kanduc D (2000) Computer-assisted analysis of molecular mimicry between human papillomavirus 16 E7 oncoprotein and human protein sequences. *Immunol Cell Biol* 78: 580–585.
- Niller HH, Wolf H, Ay E & Minarovits J (2011) Epigenetic dysregulation of Epstein–Barr virus latency and development of autoimmune disease. *Adv Exp Med Biol* 711: 82–102.
- Orian A, Schwartz AL, Israël A, Whiteside S, Kahana C & Ciechanover A (1999) Structural motifs involved in ubiquitin-mediated processing of the NF-kappaB precursor p105: roles of the glycine-rich region and a downstream ubiquitination domain. *Mol Cell Biol* 19: 3664–3673.
- Peters B, Sidney J, Bourne P *et al.* (2005) The immune epitope database and analysis resource: from vision to blueprint. *PLoS Biol* 3: e91.
- Petersen J, Rhodes G, Patrick K, Roudier J & Vaughan JH (1989) Human T cell responses to the Epstein–Barr nuclear antigen-1 (EBNA-1) as evaluated by synthetic peptides. *Cell Immunol* 123: 325–333.
- Pohl T, Gugasyan R, Grumont RJ, Strasser A, Metcalf D, Tarlinton D, Sha W, Baltimore D & Gerondakis S (2002) The combined absence of NF-kappa B1 and c-Rel reveals that overlapping roles for these transcription factors in the B cell lineage are restricted to the activation and function of mature cells. *P Natl Acad Sci USA* 99: 4514–4519.
- Poole BD, Scofield RH, Harley JB & James JA (2006) Epstein–Barr virus and molecular mimicry in systemic lupus erythematosus. *Autoimmunity* 39: 63–70.
- Porter IM, McClelland SE, Khoudoli GA, Hunter CJ, Andersen JS, McAinsh AD, Blow JJ & Swedlow JR (2007) Bod1, a novel

kinetochore protein required for chromosome biorientation. *J Cell Biol* 179: 187–197.

- Ressing ME, Horst D, Griffin BD, Tellam J, Zuo J, Khanna R, Rowe M & Wiertz EJ (2008) Epstein–Barr virus evasion of CD8(+) and CD4(+) T cell immunity via concerted actions of multiple gene products. *Semin Cancer Biol* 18: 397–408.
- Rickinson AB & Kieff E (2007) Epstein–Barr virus. Fields Virology, Vol. 2. (Knipe DM & Howley PM, eds), pp. 2655–2700. Lippincott, Williams & Wilkins, Philadelphia, PA.
- Rogelj B, Godin KS, Shaw CE & Ule J (2011) The functions of glycine-rich regions in TDP-43, FUS and related RNA-binding proteins. RNA Binding Proteins (Lorković ZJ, ed.), pp. 1–17. Landes Bioscience and Springer Science+Business Media, Austin, TX.
- Rowe M & Zuo J (2010) Immune responses to Epstein–Barr virus: molecular interactions in the virus evasion of CD8+ T cell immunity. *Microbes Infect* 12: 173–181.
- Ruggiu M, Herbst R, Kim N, Jevsek M, Fak JJ, Mann MA, Fischbach G, Burden SJ & Darnell RB (2009) Rescuing Z+ agrin splicing in Nova null mice restores synapse formation and unmasks a physiologic defect in motor neuron firing. *P Natl Acad Sci USA* 106: 3513–3518.
- Ruland J & Mak TW (2003) Transducing signals from antigen receptors to nuclear factor kappaB. *Immunol Rev* 193: 93–100.
- Saha A & Robertson ES (2011) Epstein–Barr virus-associated B-cell lymphomas: pathogenesis and clinical outcomes. *Clin Cancer Res* 17: 3056–3063.
- Santen GW, Aten E, Sun Y *et al.* (2012) Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome. *Nat Genet* 44: 379–380.
- Scerri TS, Brandler WM, Paracchini S, Morris AP, Ring SM, Richardson AJ, Talcott JB, Stein J & Monaco AP (2013) PCSK6 is associated with handedness in individuals with dyslexia. *Hum Mol Genet* 20: 608–614.
- Severa M, Giacomini E, Gafa V, Anastasiadou E, Rizzo F, Corazzari M, Romagnoli A, Trivedi P, Fimia GM & Coccia EM (2013) EBV stimulates TLR- and autophagy-dependent pathways and impairs maturation in plasmacytoid dendritic cells: implications for viral immune escape. *Eur J Immunol* 43: 147–158.
- Silverstein AM (2001) Autoimmunity versus horror autotoxicus: the struggle for recognition. Nat Immunol 2: 279–281.
- Strong MJ, Volkening K, Hammond R, Yang W, Strong W, Leystra-Lantz C & Shoesmith C (2007) TDP43 is a human low

molecular weight neurofilament (hNFL) mRNA-binding protein. *Mol Cell Neurosci* 35: 320–327.

- Takeuchi R, Toyoshima Y, Tada M *et al.* (2013) Transportin 1 accumulates in FUS inclusions in adult-onset ALS without FUS mutation. *Neuropathol Appl Neurobiol* 39: 580–584.
- Tindle RW (2002) Immune evasion in human papillomavirus-associated cervical cancer. *Nat Rev Cancer* 2: 59–65.
- Tiwari-Woodruff SK, Kaplan R, Kornblum HI & Bronstein JM (2004) Developmental expression of OAP-1/Tspan-3, a member of the tetraspanin superfamily. J Neurosci 77: 166–173.
- Trost B, Kusalik A, Lucchese G & Kanduc D (2010) Bacterial peptides are intensively present throughout the human proteome. *Self Nonself* 1: 71–74.
- Tsang CW, Lin X, Gudgeon NH, Taylor GS, Jia H, Hui EP, Chan AT, Lin CK & Rickinson AB (2006) CD4+ T-cell responses to Epstein– Barr virus nuclear antigen EBNA1 in Chinese populations are highly focused on novel C-terminal domain-derived epitopes. *J Virol* 80: 8263–8266.
- Tselis A (2012) Epstein–Barr virus cause of multiple sclerosis. *Curr Opin Rheumatol* 24: 424–428.
- UniProt Consortium (2009) The Universal Protein Resource (UniProt) 2009. Nucleic Acids Res 37: D169–D174.
- Wu CH, Yeh LS, Huang H et al. (2003) The protein information resource. *Nucleic Acids Res* 31: 345–347.
- Yang YY, Yin GL & Darnell RB (1998) The neuronal RNA-binding protein Nova-2 is implicated as the autoantigen targeted in POMA patients with dementia. P Natl Acad Sci USA 95: 13254–13259.
- Yano M, Hayakawa-Yano Y, Mele A & Darnell RB (2010) Nova2 regulates neuronal migration through an RNA switch in disabled-1 signaling. *Neuron* 66: 848–858.
- Yin Y, Manoury B & Fahraeus R (2003) Self-inhibition of synthesis and antigen presentation by Epstein–Barr virus-encoded EBNA1. *Science* 301: 1371–1374.
- Yoon SI, Jones BC, Logsdon NJ & Walter MR (2005) Same structure, different function crystal structure of the Epstein–Barr virus IL-10 bound to the soluble IL-10R1 chain. *Structure* 13: 551– 564.
- Zeng MS, Li DJ, Liu QL, Song LB, Li MZ, Zhang RH, Yu XJ, Wang HM, Ernberg I & Zeng YX (2005) Genomic sequence analysis of Epstein–Barr virus strain GD1 from a nasopharyngeal carcinoma patient. J Virol 79: 15323–15330.