1,192 research outputs found

    Control-Oriented Reduced Order Modeling of Dipteran Flapping Flight

    Get PDF
    Flying insects achieve flight stabilization and control in a manner that requires only small, specialized neural structures to perform the essential components of sensing and feedback, achieving unparalleled levels of robust aerobatic flight on limited computational resources. An engineering mechanism to replicate these control strategies could provide a dramatic increase in the mobility of small scale aerial robotics, but a formal investigation has not yet yielded tools that both quantitatively and intuitively explain flapping wing flight as an "input-output" relationship. This work uses experimental and simulated measurements of insect flight to create reduced order flight dynamics models. The framework presented here creates models that are relevant for the study of control properties. The work begins with automated measurement of insect wing motions in free flight, which are then used to calculate flight forces via an empirically-derived aerodynamics model. When paired with rigid body dynamics and experimentally measured state feedback, both the bare airframe and closed loop systems may be analyzed using frequency domain system identification. Flight dynamics models describing maneuvering about hover and cruise conditions are presented for example fruit flies (Drosophila melanogaster) and blowflies (Calliphorids). The results show that biologically measured feedback paths are appropriate for flight stabilization and sexual dimorphism is only a minor factor in flight dynamics. A method of ranking kinematic control inputs to maximize maneuverability is also presented, showing that the volume of reachable configurations in state space can be dramatically increased due to appropriate choice of kinematic inputs

    Environmental prevalence of toxigenic Vibrio cholerae O1 in Bangladesh coincides with V. cholerae non-O1 non-O139 genetic variants which overproduce autoinducer-2.

    Full text link
    Prevalence of toxigenic Vibrio cholerae O1 in aquatic reservoirs in Bangladesh apparently increases coinciding with the occurrence of seasonal cholera epidemics. In between epidemics, these bacteria persist in water mostly as dormant cells, known as viable but non-culturable cells (VBNC), or conditionally viable environmental cells (CVEC), that fail to grow in routine culture. CVEC resuscitate to active cells when enriched in culture medium supplemented with quorum sensing autoinducers CAI-1 or AI-2 which are signal molecules that regulate gene expression dependent on cell density. V. cholerae O1 mutant strains with inactivated cqsS gene encoding the CAI-1 receptor has been shown to overproduce AI-2 that enhance CVEC resuscitation in water samples. Since V. cholerae non-O1 non-O139 (non-cholera-vibrios) are abundant in aquatic ecosystems, we identified and characterized naturally occurring variant strains of V. cholerae non-O1 non-O139 which overproduce AI-2, and monitored their co-occurrence with V. cholerae O1 in water samples. The nucleotide sequence and predicted protein products of the cqsS gene carried by AI-2 overproducing variant strains showed divergence from that of typical V. cholerae O1 or non-O1 strains, and their culture supernatants enhanced resuscitation of CVEC in water samples. Furthermore, prevalence of V. cholerae O1 in the aquatic environment was found to coincide with an increase in AI-2 overproducing non-O1 non-O139 strains. These results suggest a possible role of non-cholera vibrios in the environmental biology of the cholera pathogen, in which non-O1 non-O139 variant strains overproducing AI-2 presumably contribute in resuscitation of the latent pathogen, leading to seasonal cholera epidemics. Importance. Toxigenic Vibrio cholerae which causes seasonal epidemics of cholera persists in aquatic reservoirs in endemic areas. The bacteria mostly exist in a dormant state during inter-epidemic periods, but periodically resuscitate to the active form. The resuscitation is enhanced by signal molecules called autoinducers (AIs). Toxigenic V. cholerae can be recovered from water samples that normally test negative for the organism in conventional culture, by supplementing the culture medium with exogenous AIs. V. cholerae belonging to the non-O1 non-O139 serogroups which do not cause cholera are also abundant in natural waters, and they are capable of producing AIs. In this study we characterized V. cholerae non-O1 non-O139 variant strains which overproduce an autoinducer called AI-2, and found that the abundance of the cholera pathogen in aquatic reservoirs correlates with an increase in the AI-2 overproducing strains. Our results suggest a probable role of these variant strains in the environmental biology and epidemiology of toxigenic V. cholerae, and may lead to novel means for surveillance, prevention and control of cholera

    In Situ Abiotic Detoxification and Immobilization of Hexavalent Chromium

    Get PDF
    Detailed site characterization data from the former electroplating shop at the U.S. Coast Guard Air Support Center, Elizabeth City, North Carolina, suggested that the elevated Cr(VI) in the capillary fringe area had contaminated the ground water at the site. Most of the mobile Cr(VI) is present in the capillary fringe zone of the aquifer under an oxidizing environment. Current literature suggests that the reduction of Cr(VI) to Cr(Ill) through in situ redox manipulation in the presence of a reductant is an innovative technique for remediating chromate-contaminated sediments and ground water. The objective of this study was to evaluate the effectiveness of sodium dithionite in creating a reductive environment to remediate Cr(VI) present in soil. Sodium dithionite, a strong reductant, was injected into a small area of the vadose zone where elevated Cr(VI) was identified. Several striking changes observed in the target zone during the post-injection monitoring periods include a significant decrease in Eh(SHE), as much as ~ 700 m V, absence of dissolved oxygen for 48 weeks, and the increase of Fe(II) concentrations. Results indicated that the in situ remedial treatment of Cr(VI) in the capillary fringe area was effective and consequently the concentration of Cr(VI) in ground water dropped below the MCLG level. This research demonstrated the effectiveness of in situ abiotic remediation by reducing Cr(VI) concentrations, mobility, and toxicity in soils and ground water within a short period of time. Therefore, sodium dithionite would be a feasible and cost-effective option for a full-scale remedial approach for the contaminated site at the U.S. Coast Guard Facility

    Dynamic Response of Foundations on Two-Parameter Media

    Get PDF
    A finite element algorithm is presented to analyze the dynamic response of rectangular foundations resting on an elastic medium. The foundation is modeled by rectangular thin plate elements and the supporting elastic medium is represented by the two parameter model proposed by Vlasov. The natural frequencies of the foundation-elastic medium are investigated. A parametric study is conducted to examine the effects of the edge and corner forces, that are accounted for in the two parameter model, on the dynamic response of a plate subjected to a moving vertical force

    Reemergence of Epidemic Vibrio cholerae O139, Bangladesh

    Get PDF
    During March and April 2002, a resurgence of Vibrio cholerae O139 occurred in Dhaka and adjoining areas of Bangladesh with an estimated 30,000 cases of cholera. Patients infected with O139 strains were much older than those infected with O1 strains (p<0.001). The reemerged O139 strains belong to a single ribotype corresponding to one of two ribotypes that caused the initial O139 outbreak in 1993. Unlike the strains of 1993, the recent strains are susceptible to trimethoprim, sulphamethoxazole, and streptomycin but resistant to nalidixic acid. The new O139 strains carry a copy of the Calcutta type CTXCalc prophage in addition to the CTXET prophage carried by the previous strains. Thus, the O139 strains continue to evolve, and the adult population continues to be more susceptible to O139 cholera, which suggests a lack of adequate immunity against this serogroup. These findings emphasize the need for continuous monitoring of the new epidemic strains
    • …
    corecore