441 research outputs found

    First Experimental Evidence of a Beam-Beam Long-Range Compensation Using Wires in the Large Hadron Collider

    Full text link
    In high intensity and high energy colliders such as the CERN Large Hadron Collider and its future High Luminosity upgrade, interactions between the two beams around the different Interaction Points impose machine performance limitations. In fact, their effect reduces the beam lifetime and therefore the collider's luminosity reach. Those interactions are called Beam-Beam Long-Range interactions and a possible mitigation of their effect using DC wires was proposed for the first time in the early 2000's. This solution is currently being studied as an option for enhancing the HL-LHC performance. In 2017 and 2018, four demonstrators of wire compensators have been installed in the LHC. A two-year long experimental campaign followed in order to validate the possibility to mitigate the BBLR interactions in the LHC. During this campaign, a proof-of-concept was completed and motivated an additional set of experiments, successfully demonstrating the mitigation of BBLR interactions effects in beam conditions compatible with the operational configuration. This paper reports in detail the preparation of the experimental campaign, the obtained results and draws some perspectives for the future.Comment: Draft for a later PRAB submissio

    Magnet Acceptance and Allocation at the LHC Magnet Evaluation Board

    Get PDF
    The normal and superconducting magnets for the LHC ring have been carefully examined to insure that each of about 1900 assemblies is suitable for the operation in the accelerator. Hardware experts and accelerator physicists have contributed to this work that consisted in magnet acceptance, and sorting according to geometry, field quality and quench level. This paper gives a description of the magnet approval mechanism that has been running since four years, reporting in a concise summary the main results achieved

    Conceptual Design of the LHC Interaction Region Upgrade: Phase-I

    Get PDF
    The LHC is starting operation with beam. The primary goal of CERN and the LHC community is to ensure that the collider is operated efficiently and that it achieves nominal performance in the shortest term. Since several years the community has been discussing the directions for maximizing the physics reach of the LHC by upgrading the experiments, in particular ATLAS and CMS, the LHC machine and the CERN proton injector complex, in a phased approach. The first phase of the LHC interaction region upgrade was approved by Council in December 2007. This phase relies on the mature Nb-Ti superconducting magnet technology with the target of increasing the LHC luminosity to 2 to 3 10^34 cm^-2s^-1, while maximising the use of the existing infrastructure. In this report, we present the goals and the proposed conceptual solutions for the LHC IR Upgrade Phase-I which include the recommendations of the conceptual design review

    CLIC: a Two-Beam Multi-TeV e±e\pm Linear Collider

    Get PDF
    The CLIC study of a high-energy (0.5 - 5 TeV), high-luminosity (1034 - 1035 cm-2 sec-1) e+e- linear collider is presented. Beam acceleration using high frequency (30 GHz) normal-conducting structures operating at high accelerating fields (150 MV/m) significantly reduces the length and, in consequence, the cost of the linac. Using parameters derived from general scaling laws for linear colliders, the beam stability is shown to be similar to lower frequency designs in spite of the strong wake-field dependency on frequency. A new cost-effective and efficient drive beam generation scheme for RF power production by the so-called "Two-Beam Acceleration" method is described. It uses a thermionic gun and a fully-loaded normal-conducting linac operating at low frequency (937 MHz) to generate and accelerate the drive beam bunches, and RF multiplication by funnelling in compressor rings to produce the desired bunch structure. Recent 30 GHz hardware developments and CLIC Test Facility (CTF) results are described

    Machine layout and performance

    Get PDF
    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC

    The LHC Injection Tests

    Get PDF
    A series of LHC injection tests was performed in August and September 2008. The first saw beam injected into sector 23; the second into sectors 78 and 23; the third into sectors 78-67 and sectors 23-34-45. The fourth, into sectors 23-34-45, was performed the evening before the extended injection test on the 10th September which saw both beams brought around the full circumference of the LHC. The tests enabled the testing and debugging of a number of critical control and hardware systems; testing and validation of instrumentation with beam for the first time; deployment, and validation of a number of measurement procedures. Beam based measurements revealed a number of machine configuration issues that were rapidly resolved. The tests were undoubtedly an essential precursor to the successful start of LHC beam commissioning. This paper provides an outline of preparation for the tests, the machine configuration and summarizes the measurements made and individual system performance

    Diagnostic value of triggering receptor expressed on myeloid cells-1 and C-reactive protein for patients with lung infiltrates: an observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Differential diagnosis of patients with lung infiltrates remains a challenge. Triggering receptor expressed on myeloid cells (TREM)-1 is a neutrophil and monocyte receptor up-regulated during infection. The aim of this study was to evaluate the diagnostic accuracy of TREM-1 and of C-reactive protein (CRP) from patients with lung infiltrates to discern community acquired lung infections.</p> <p>Methods</p> <p>68 patients admitted to a medical ward with acute respiratory illness were enrolled in the study. Neutrophil and monocyte TREM-1 expression were measured by flow cytometry, sTREM-1 by an enzyme immunoassay and C-reactive protein by nephelometry. Clinical pulmonary infection score was recorded.</p> <p>Results</p> <p>34 patients were diagnosed with bacterial community acquired pneumonia (group A) and 34 with non-bacterial pulmonary disease (group B). Median serum TREM-1 concentration was 102.09 pg/ml in group A and lower than 15.10 pg/ml (p < 0.0001) in group B. Mean±SE neutrophil TREM-1 expression was 4.67 ± 0.53 MFI in group A and 2.64 ± 0.25 MFI (p = 0.001) in group B. Monocyte TREM-1 expression was 4.2 ± 0.42 MFI in group A and 2.64 ± 0.35 MFI (p = 0.007) in group B and mean±SE CRP was 18.03 ± 2 mg/ml in group A and 7.1 ± 1.54 mg/ml (p < 0.001) in group B. A cut-off of 19.53 pg/ml of sTREM-1 with sensitivity 82.6% and specificity 63% to discriminate between infectious and non-infectious pulmonary infiltrates was found. sTREM-1 at admission greater than 180 pg/ml was accompanied with unfavourable outcome.</p> <p>Conclusion</p> <p>TREM-1 myeloid expression and sTREM-1 are reliable markers of bacterial infection among patients with pulmonary infiltrates; sTREM-1 is a predictor of final outcome.</p

    Plasma CC16 levels are associated with development of ALI/ARDS in patients with ventilator-associated pneumonia: a retrospective observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite consensus criteria, diagnosing acute lung injury, or its more severe form acute respiratory distress syndrome (ALI/ARDS) remains challenging. Adding objective measures, such as plasma levels of biological markers could facilitate recognition of ALI/ARDS. This study was designed to assess and compare the diagnostic accuracy of biological markers for ALI/ARDS with ventilator-associated pneumonia (VAP).</p> <p>Methods</p> <p>We performed serial measurements of Clara cell protein (CC16), soluble receptor for advanced glycation end products (sRAGE), surfactant protein D (SP-D) and Krebs von den Lungen (KL-6) in plasma of patients with VAP and mechanically ventilated control patients without VAP. ALI/ARDS was diagnosed using the criteria of the North-American European consensus conference.</p> <p>Results</p> <p>Thirty-seven patients were enrolled - 22 patients with VAP and 15 control patients. Ten patients with pneumonia met the ALI/ARDS consensus criteria. Control patients never met these criteria. Plasma CC16 had a good diagnostic capacity for ALI/ARDS as shown by the receiver operating characteristic curve with an area under the curve of 0.91 (95% confidence interval (CI) 0.79 - 1.00; <it>p </it>< 0.001). Identification of ALI/ARDS patients by sudden increases in plasma CC16 of 30% or more yielded a sensitivity of 90% and a specificity of 92%. Of note, levels of CC16 increased 2 days before ALI/ARDS diagnosis. A cut-off level of 50 ng/ml SP-D yielded a specificity of 100% while the sensitivity was 70%. The area under the curve for SP-D was 0.80 (95% CI 0.58 - 1.00; <it>p </it>= 0.02). The diagnostic accuracies of KL-6 and sRAGE were low.</p> <p>Conclusion</p> <p>Plasma CC16 seems a potential biological marker for ALI/ARDS in patients with VAP. Plasma levels of sRAGE, SP-D and KL-6 have limited discriminative power for diagnosing ALI/ARDS in VAP.</p
    • …
    corecore