5 research outputs found
Characterising acute and chronic care needs: insights from the Global Burden of Disease Study 2019
Chronic care manages long-term, progressive conditions, while acute care addresses short-term conditions. Chronic conditions increasingly strain health systems, which are often unprepared for these demands. This study examines the burden of conditions requiring acute versus chronic care, including sequelae. Conditions and sequelae from the Global Burden of Diseases Study 2019 were classified into acute or chronic care categories. Data were analysed by age, sex, and socio-demographic index, presenting total numbers and contributions to burden metrics such as Disability-Adjusted Life Years (DALYs), Years Lived with Disability (YLD), and Years of Life Lost (YLL). Approximately 68% of DALYs were attributed to chronic care, while 27% were due to acute care. Chronic care needs increased with age, representing 86% of YLDs and 71% of YLLs, and accounting for 93% of YLDs from sequelae. These findings highlight that chronic care needs far exceed acute care needs globally, necessitating health systems to adapt accordingly.</p
Burden of disease scenarios by state in the USA, 2022–50: a forecasting analysis for the Global Burden of Disease Study 2021
Background: The capacity to anticipate future health issues is important for both policy makers and practitioners in the USA, as such insights can facilitate effective planning, investment, and implementation strategies. Forecasting trends in disease and injury burden is not only crucial for policy makers but also garners substantial interest from the general populace and leads to a better-informed public. Through the integration of new data sources, the refinement of methodologies, and the inclusion of additional causes, we have improved our previous forecasting efforts within the scope of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) to produce forecasts at the state and national levels for the USA under various possible scenarios. Methods: We developed a comprehensive framework for forecasting life expectancy, healthy life expectancy (HALE), cause-specific mortality, and disability-adjusted life-years (DALYs) due to 359 causes of disease and injury burden from 2022 to 2050 for the USA and all 50 states and Washington, DC. Using the GBD 2021 Future Health Scenarios modelling framework, we forecasted drivers of disease, demographic drivers, risk factors, temperature and particulate matter, mortality and years of life lost (YLL), population, and non-fatal burden. In addition to a reference scenario (representing the most probable future trajectory), we explored various future scenarios and their potential impacts over the next several decades on human health. These alternative scenarios comprised four risk elimination scenarios (including safer environment, improved behavioural and metabolic risks, improved childhood nutrition and vaccination, and a combined scenario) and three USA-specific scenarios based on risk exposure or attributable burden in the best-performing US states (improved high adult BMI and high fasting plasma glucose [FPG], improved smoking, and improved drug use [encompassing opioids, cocaine, amphetamine, and others]). Findings: Life expectancy in the USA is projected to increase from 78·3 years (95% uncertainty interval 78·1–78·5) in 2022 to 79·9 years (79·5–80·2) in 2035, and to 80·4 years (79·8–81·0) in 2050 for all sexes combined. This increase is forecasted to be modest compared with that in other countries around the world, resulting in the USA declining in global rank over the 2022–50 forecasted period among the 204 countries and territories in GBD, from 49th to 66th. There is projected to be a decline in female life expectancy in West Virginia between 1990 and 2050, and little change in Arkansas and Oklahoma. Additionally, after 2023, we projected almost no change in female life expectancy in many states, notably in Oklahoma, South Dakota, Utah, Iowa, Maine, and Wisconsin. Female HALE is projected to decline between 1990 and 2050 in 20 states and to remain unchanged in three others. Drug use disorders and low back pain are projected to be the leading Level 3 causes of age-standardised DALYs in 2050. The age-standardised DALY rate due to drug use disorders is projected to increase considerably between 2022 and 2050 (19·5% [6·9–34·1]). Our combined risk elimination scenario shows that the USA could gain 3·8 additional years (3·6–4·0) of life expectancy and 4·1 additional years (3·9–4·3) of HALE in 2050 versus the reference scenario. Using our USA-specific scenarios, we forecasted that the USA could gain 0·4 additional years (0·3–0·6) of life expectancy and 0·6 additional years (0·5–0·8) of HALE in 2050 under the improved drug use scenario relative to the reference scenario. Life expectancy and HALE are likewise projected to be 0·4–0·5 years higher in 2050 under the improved adult BMI and FPG and improved smoking scenarios compared with the reference scenario. However, the increases in these scenarios would not substantially improve the USA's global ranking in 2050 (from 66th of 204 in life expectancy in the reference scenario to 63rd–64th in each of the three USA-specific scenarios), indicating that the USA's best-performing states are still lagging behind other countries in their rank throughout the forecasted period. Regardless, an estimated 12·4 million (11·3–13·5) deaths could be averted between 2022 and 2050 if the USA were to follow the combined scenario trajectory rather than the reference scenario. There would also be 1·4 million (0·7–2·2) fewer deaths over the 28-year forecasted period with improved adult BMI and FPG, 2·1 million (1·3–2·9) fewer deaths with improved exposure to smoking, and 1·2 million (0·9–1·5) fewer deaths with lower rates of drug use deaths. Interpretation: Our findings highlight the alarming trajectory of health challenges in the USA, which, if left unaddressed, could lead to a reversal of the health progress made over the past three decades for some US states and a decline in global health standing for all states. The evidence from our alternative scenarios along with other published studies suggests that through collaborative, evidence-based strategies, there are opportunities to change the trajectory of health outcomes in the USA, such as by investing in scientific innovation, health-care access, preventive health care, risk exposure reduction, and education. Our forecasts clearly show that the time to act is now, as the future of the country's health and wellbeing—as well as its prosperity and leadership position in science and innovation—are at stake. Funding: Bill & Melinda Gates Foundation.</p
The burden of diseases, injuries, and risk factors by state in the USA, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides a comprehensive assessment of health and risk factor trends at global, regional, national, and subnational levels. This study aims to examine the burden of diseases, injuries, and risk factors in the USA and highlight the disparities in health outcomes across different states. Methods: GBD 2021 analysed trends in mortality, morbidity, and disability for 371 diseases and injuries and 88 risk factors in the USA between 1990 and 2021. We used several metrics to report sources of health and health loss related to specific diseases, injuries, and risk factors. GBD 2021 methods accounted for differences in data sources and biases. The analysis of levels and trends for causes and risk factors within the same computational framework enabled comparisons across states, years, age groups, and sex. GBD 2021 estimated years lived with disability (YLDs) and disability-adjusted life-years (DALYs; the sum of years of life lost to premature mortality and YLDs) for 371 diseases and injuries, years of life lost (YLLs) and mortality for 288 causes of death, and life expectancy and healthy life expectancy (HALE). We provided estimates for 88 risk factors in relation to 155 health outcomes for 631 risk–outcome pairs and produced risk-specific estimates of summary exposure value, relative health risk, population attributable fraction, and risk-attributable burden measured in DALYs and deaths. Estimates were produced by sex (male and female), age (25 age groups from birth to ≥95 years), and year (annually between 1990 and 2021). 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws (ie, 500 random samples from the estimate's distribution). Uncertainty was propagated at each step of the estimation process. Findings: We found disparities in health outcomes and risk factors across US states. Our analysis of GBD 2021 highlighted the relative decline in life expectancy and HALE compared with other countries, as well as the impact of COVID-19 during the first 2 years of the pandemic. We found a decline in the USA's ranking of life expectancy from 1990 to 2021: in 1990, the USA ranked 35th of 204 countries and territories for males and 19th for females, but dropped to 46th for males and 47th for females in 2021. When comparing life expectancy in the best-performing and worst-performing US states against all 203 other countries and territories (excluding the USA as a whole), Hawaii (the best-ranked state in 1990 and 2021) dropped from sixth-highest life expectancy in the world for males and fourth for females in 1990 to 28th for males and 22nd for females in 2021. The worst-ranked state in 2021 ranked 107th for males (Mississippi) and 99th for females (West Virginia). 14 US states lost life expectancy over the study period, with West Virginia experiencing the greatest loss (2·7 years between 1990 and 2021). HALE ranking declines were even greater; in 1990, the USA was ranked 42nd for males and 32nd for females but dropped to 69th for males and 76th for females in 2021. When comparing HALE in the best-performing and worst-performing US states against all 203 other countries and territories, Hawaii ranked 14th highest HALE for males and fifth for females in 1990, dropping to 39th for males and 34th for females in 2021. In 2021, West Virginia—the lowest-ranked state that year—ranked 141st for males and 137th for females. Nationally, age-standardised mortality rates declined between 1990 and 2021 for many leading causes of death, most notably for ischaemic heart disease (56·1% [95% UI 55·1–57·2] decline), lung cancer (41·9% [39·7–44·6]), and breast cancer (40·9% [38·7–43·7]). Over the same period, age-standardised mortality rates increased for other causes, particularly drug use disorders (878·0% [770·1–1015·5]), chronic kidney disease (158·3% [149·6–167·9]), and falls (89·7% [79·8–95·8]). We found substantial variation in mortality rates between states, with Hawaii having the lowest age-standardised mortality rate (433·2 per 100 000 [380·6–493·4]) in 2021 and Mississippi having the highest (867·5 per 100 000 [772·6–975·7]). Hawaii had the lowest age-standardised mortality rates throughout the study period, whereas Washington, DC, experienced the most improvement (a 40·7% decline [33·2–47·3]). Only six countries had age-standardised rates of YLDs higher than the USA in 2021: Afghanistan, Lesotho, Liberia, Mozambique, South Africa, and the Central African Republic, largely because the impact of musculoskeletal disorders, mental disorders, and substance use disorders on age-standardised disability rates in the USA is so large. At the state level, eight US states had higher age-standardised YLD rates than any country in the world: West Virginia, Kentucky, Oklahoma, Pennsylvania, New Mexico, Ohio, Tennessee, and Arizona. Low back pain was the leading cause of YLDs in the USA in 1990 and 2021, although the age-standardised rate declined by 7·9% (1·8–13·0) from 1990. Depressive disorders (56·0% increase [48·2–64·3]) and drug use disorders (287·6% [247·9–329·8]) were the second-leading and third-leading causes of age-standardised YLDs in 2021. For females, mental health disorders had the highest age-standardised YLD rate, with an increase of 59·8% (50·6–68·5) between 1990 and 2021. Hawaii had the lowest age-standardised rates of YLDs for all sexes combined (12 085·3 per 100 000 [9090·8–15 557·1]), whereas West Virginia had the highest (14 832·9 per 100 000 [11 226·9–18 882·5]). At the national level, the leading GBD Level 2 risk factors for death for all sexes combined in 2021 were high systolic blood pressure, high fasting plasma glucose, and tobacco use. From 1990 to 2021, the age-standardised mortality rates attributable to high systolic blood pressure decreased by 47·8% (43·4–52·5) and for tobacco use by 5·1% (48·3%–54·1%), but rates increased for high fasting plasma glucose by 9·3% (0·4–18·7). The burden attributable to risk factors varied by age and sex. For example, for ages 15–49 years, the leading risk factors for death were drug use, high alcohol use, and dietary risks. By comparison, for ages 50–69 years, tobacco was the leading risk factor for death, followed by dietary risks and high BMI. Interpretation: GBD 2021 provides valuable information for policy makers, health-care professionals, and researchers in the USA at the national and state levels to prioritise interventions, allocate resources effectively, and assess the effects of health policies and programmes. By addressing socioeconomic determinants, risk behaviours, environmental influences, and health disparities among minority populations, the USA can work towards improving health outcomes so that people can live longer and healthier lives. Funding: Bill & Melinda Gates Foundation.</p
Global Burden of Cardiovascular Diseases and Risks, 1990-2022
No description supplied</p
Global fertility in 204 countries and territories, 1950–2021, with forecasts to 2100: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BackgroundAccurate assessments of current and future fertility—including overall trends and changing population age structures across countries and regions—are essential to help plan for the profound social, economic, environmental, and geopolitical challenges that these changes will bring. Estimates and projections of fertility are necessary to inform policies involving resource and health-care needs, labour supply, education, gender equality, and family planning and support. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 produced up-to-date and comprehensive demographic assessments of key fertility indicators at global, regional, and national levels from 1950 to 2021 and forecast fertility metrics to 2100 based on a reference scenario and key policy-dependent alternative scenarios.MethodsTo estimate fertility indicators from 1950 to 2021, mixed-effects regression models and spatiotemporal Gaussian process regression were used to synthesise data from 8709 country-years of vital and sample registrations, 1455 surveys and censuses, and 150 other sources, and to generate age-specific fertility rates (ASFRs) for 5-year age groups from age 10 years to 54 years. ASFRs were summed across age groups to produce estimates of total fertility rate (TFR). Livebirths were calculated by multiplying ASFR and age-specific female population, then summing across ages 10–54 years. To forecast future fertility up to 2100, our Institute for Health Metrics and Evaluation (IHME) forecasting model was based on projections of completed cohort fertility at age 50 years (CCF50; the average number of children born over time to females from a specified birth cohort), which yields more stable and accurate measures of fertility than directly modelling TFR. CCF50 was modelled using an ensemble approach in which three sub-models (with two, three, and four covariates variously consisting of female educational attainment, contraceptive met need, population density in habitable areas, and under-5 mortality) were given equal weights, and analyses were conducted utilising the MR-BRT (meta-regression—Bayesian, regularised, trimmed) tool. To capture time-series trends in CCF50 not explained by these covariates, we used a first-order autoregressive model on the residual term. CCF50 as a proportion of each 5-year ASFR was predicted using a linear mixed-effects model with fixed-effects covariates (female educational attainment and contraceptive met need) and random intercepts for geographical regions. Projected TFRs were then computed for each calendar year as the sum of single-year ASFRs across age groups. The reference forecast is our estimate of the most likely fertility future given the model, past fertility, forecasts of covariates, and historical relationships between covariates and fertility. We additionally produced forecasts for multiple alternative scenarios in each location: the UN Sustainable Development Goal (SDG) for education is achieved by 2030; the contraceptive met need SDG is achieved by 2030; pro-natal policies are enacted to create supportive environments for those who give birth; and the previous three scenarios combined. Uncertainty from past data inputs and model estimation was propagated throughout analyses by taking 1000 draws for past and present fertility estimates and 500 draws for future forecasts from the estimated distribution for each metric, with 95% uncertainty intervals (UIs) given as the 2·5 and 97·5 percentiles of the draws. To evaluate the forecasting performance of our model and others, we computed skill values—a metric assessing gain in forecasting accuracy—by comparing predicted versus observed ASFRs from the past 15 years (2007–21). A positive skill metric indicates that the model being evaluated performs better than the baseline model (here, a simplified model holding 2007 values constant in the future), and a negative metric indicates that the evaluated model performs worse than baseline.FindingsDuring the period from 1950 to 2021, global TFR more than halved, from 4·84 (95% UI 4·63–5·06) to 2·23 (2·09–2·38). Global annual livebirths peaked in 2016 at 142 million (95% UI 137–147), declining to 129 million (121–138) in 2021. Fertility rates declined in all countries and territories since 1950, with TFR remaining above 2·1—canonically considered replacement-level fertility—in 94 (46·1%) countries and territories in 2021. This included 44 of 46 countries in sub-Saharan Africa, which was the super-region with the largest share of livebirths in 2021 (29·2% [28·7–29·6]). 47 countries and territories in which lowest estimated fertility between 1950 and 2021 was below replacement experienced one or more subsequent years with higher fertility; only three of these locations rebounded above replacement levels. Future fertility rates were projected to continue to decline worldwide, reaching a global TFR of 1·83 (1·59–2·08) in 2050 and 1·59 (1·25–1·96) in 2100 under the reference scenario. The number of countries and territories with fertility rates remaining above replacement was forecast to be 49 (24·0%) in 2050 and only six (2·9%) in 2100, with three of these six countries included in the 2021 World Bank-defined low-income group, all located in the GBD super-region of sub-Saharan Africa. The proportion of livebirths occurring in sub-Saharan Africa was forecast to increase to more than half of the world's livebirths in 2100, to 41·3% (39·6–43·1) in 2050 and 54·3% (47·1–59·5) in 2100. The share of livebirths was projected to decline between 2021 and 2100 in most of the six other super-regions—decreasing, for example, in south Asia from 24·8% (23·7–25·8) in 2021 to 16·7% (14·3–19·1) in 2050 and 7·1% (4·4–10·1) in 2100—but was forecast to increase modestly in the north Africa and Middle East and high-income super-regions. Forecast estimates for the alternative combined scenario suggest that meeting SDG targets for education and contraceptive met need, as well as implementing pro-natal policies, would result in global TFRs of 1·65 (1·40–1·92) in 2050 and 1·62 (1·35–1·95) in 2100. The forecasting skill metric values for the IHME model were positive across all age groups, indicating that the model is better than the constant prediction.InterpretationFertility is declining globally, with rates in more than half of all countries and territories in 2021 below replacement level. Trends since 2000 show considerable heterogeneity in the steepness of declines, and only a small number of countries experienced even a slight fertility rebound after their lowest observed rate, with none reaching replacement level. Additionally, the distribution of livebirths across the globe is shifting, with a greater proportion occurring in the lowest-income countries. Future fertility rates will continue to decline worldwide and will remain low even under successful implementation of pro-natal policies. These changes will have far-reaching economic and societal consequences due to ageing populations and declining workforces in higher-income countries, combined with an increasing share of livebirths among the already poorest regions of the world.</p
