86 research outputs found

    Optimal boundary control of a viscous Cahn-Hilliard system with dynamic boundary condition and double obstacle potentials

    Get PDF
    In this paper, we investigate optimal boundary control problems for Cahn-Hilliard variational inequalities with a dynamic boundary condition involving double obstacle potentials and the Laplace-Beltrami operator. The cost functional is of standard tracking type, and box constraints for the controls are prescribed. We prove existence of optimal controls and derive first-order necessary conditions of optimality. The general strategy, which follows the lines of the recent approach by Colli, Farshbaf-Shaker, Sprekels (see the preprint arXiv:1308.5617) to the (simpler) Allen-Cahn case, is the following: we use the results that were recently established by Colli, Gilardi, Sprekels in the preprint arXiv:1407.3916 [math.AP] for the case of (differentiable) logarithmic potentials and perform a so-called "deep quench limit". Using compactness and monotonicity arguments, it is shown that this strategy leads to the desired first-order necessary optimality conditions for the case of (non-differentiable) double obstacle potentials.Comment: Key words: optimal control; parabolic obstacle problems; MPECs; dynamic boundary conditions; optimality conditions. arXiv admin note: substantial text overlap with arXiv:1308.561

    Relating phase field and sharp interface approaches to structural topology optimization

    Get PDF
    A phase field approach for structural topology optimization which allows for topology changes and multiple materials is analyzed. First order optimality conditions are rigorously derived and it is shown via formally matched asymptotic expansions that these conditions converge to classical first order conditions obtained in the context of shape calculus. We also discuss how to deal with triple junctions where e.g. two materials and the void meet. Finally, we present several numerical results for mean compliance problems and a cost involving the least square error to a target displacement

    Optimal control of Allen-Cahn systems

    Get PDF
    Optimization problems governed by Allen-Cahn systems including elastic effects are formulated and first-order necessary optimality conditions are presented. Smooth as well as obstacle potentials are considered, where the latter leads to an MPEC. Numerically, for smooth potential the problem is solved efficiently by the Trust-Region-Newton-Steihaug-cg method. In case of an obstacle potential first numerical results are presented

    Necessary conditions of first-order for an optimal boundary control problem for viscous damage processes in 2D

    Get PDF
    Controlling the growth of material damage is an important engineering task with plenty of real world applications. In this paper we approach this topic from the mathematical point of view by investigating an optimal boundary control problem for a damage phase-field model for viscoelastic media. We consider non-homogeneous Neumann data for the displacement field which describe external boundary forces and act as control variable. The underlying hyberbolic-parabolic PDE system for the state variables exhibit highly nonlinear terms which emerge in context with damage processes. The cost functional is of tracking type, and constraints for the control variable are prescribed. Based on recent results from [4], where global-in-time well-posedness of strong solutions to the lower level problem and existence of optimal controls of the upper level problem have been established, we show in this contribution differentiability of the control-to-state mapping, wellposedness of the linearization and existence of solutions of the adjoint state system. Due to the highly nonlinear nature of the state system which has by our knowledge not been considered for optimal control problems in the literature, we present a very weak formulation and estimation techniques of the associated adjoint system. For mathematical reasons the analysis is restricted here to the two-dimensional case. We conclude our results with first-order necessary optimality conditions in terms of a variational inequality together with PDEs for the state and adjoint state system

    Second-order analysis of a boundary control problem for the viscous Cahn--Hilliard equation with dynamic boundary condition

    Get PDF
    In this paper we establish second-order sufficient optimality conditions for a boundary control problem that has been introduced and studied by three of the authors in the preprint arXiv:1407.3916. This control problem regards the viscous Cahn--Hilliard equation with possibly singular potentials and dynamic boundary conditions.Comment: Key words: Cahn--Hilliard equation, dynamic boundary conditions, phase separation, singular potentials, optimal control, first and second order optimality conditions, adjoint state system. arXiv admin note: text overlap with arXiv:1212.235
    corecore