6 research outputs found

    Elevated lipoprotein(a) increases risk of subsequent major adverse cardiovascular events (MACE) and coronary revascularisation in incident ASCVD patients: a cohort study from the UK biobank

    Get PDF
    Background and aims: Elevated lipoprotein(a) [Lp(a)] is a genetic driver for atherosclerotic cardiovascular disease (ASCVD). We aimed to provide novel insights on the associated risk of elevated versus normal Lp(a) levels on major adverse cardiovascular events (MACE) in an incident ASCVD cohort. Methods: This was an observational cohort study of incident ASCVD patients. MACE counts and incidence rates (IRs) per 100-person-years were reported for patients with normal (<65 nmol/L) and elevated (>150 nmol/L) Lp(a) within the first year after incident ASCVD diagnosis and overall follow-up. Cox proportional hazard models quantified the risk of MACE associated with a 100 nmol/L increase in Lp(a). Results: The study cohort included 32,537 incident ASCVD patients; 5204 with elevated and 22,257 with normal Lp(a). Of those with elevated Lp(a), 41.2% had a subsequent MACE, versus 35.61% with normal Lp(a). Within the first year of follow-up, the IRs of composite MACE and coronary revascularisation were significantly higher (p < 0.001) in patients with elevated versus normal Lp(a) (IR difference 6.79 and 4.66). This trend was also observed in the overall follow-up (median 4.7 years). Using time to first subsequent MACE, a 100 nmol/L increase in Lp(a) was associated with an 8.0% increased risk of composite MACE, and 18.6% increased risk of coronary revascularisation during the overall follow-up period. Conclusions: The association of elevated Lp(a) with increased risk of subsequent MACE and coronary revascularisation, highlights a population who may benefit from earlier and more targeted intervention for cardiovascular risk including Lp(a), particularly within the first year after ASCVD diagnosis. Proactive Lp(a) testing as part of routine clinical practice can help to identify and better manage these higher-risk individuals

    Selection in Australian Thoroughbred horses acts on a locus associated with early two-year old speed

    No full text
    Thoroughbred horse racing is a global sport with major hubs in Europe, North America, Australasia and Japan. Regional preferences for certain traits have resulted in phenotypic variation that may result from adaptation to the local racing ecosystem. Here, we test the hypothesis that genes selected for regional phenotypic variation may be identified by analysis of selection signatures in pan-genomic SNP genotype data. Comparing Australian to non-Australian Thoroughbred horses (n = 99), the most highly differentiated loci in a composite selection signals (CSS) analysis were on ECA6 (34.75-34.85 Mb), ECA14 (33.2-33.52 Mb and 35.52-36.94 Mb) and ECA16 (24.28-26.52 Mb) in regions containing candidate genes for exercise adaptations including cardiac function (ARHGAP26, HBEGF, SRA1), synapse development and locomotion (APBB3, ATXN7, CLSTN3), stress response (NR3C1) and the skeletal muscle response to exercise (ARHGAP26, NDUFA2). In a genome-wide association study for field-measured speed in two-year-olds (n = 179) SNPs contained within the single association peak (33.2-35.6 Mb) overlapped with the ECA14 CSS signals and spanned a protocadherin gene cluster. Association tests using higher density SNP genotypes across the ECA14 locus identified a SNP within the PCDHGC5 gene associated with elite racing performance (n = 922). These results indicate that there may be differential selection for racing performance under racing and management conditions that are specific to certain geographic racing regions. In Australia breeders have principally selected horses for favourable genetic variants at loci containing genes that modulate behaviour, locomotion and skeletal muscle physiology that together appear to be contributing to early two-year-old speed

    Equine skeletal muscle adaptations to exercise and training: evidence of differential regulation of autophagosomal and mitochondrial components

    No full text
    Abstract Background A single bout of exercise induces changes in gene expression in skeletal muscle. Regular exercise results in an adaptive response involving changes in muscle architecture and biochemistry, and is an effective way to manage and prevent common human diseases such as obesity, cardiovascular disorders and type II diabetes. However, the biomolecular mechanisms underlying such responses still need to be fully elucidated. Here we performed a transcriptome-wide analysis of skeletal muscle tissue in a large cohort of untrained Thoroughbred horses (n = 51) before and after a bout of high-intensity exercise and again after an extended period of training. We hypothesized that regular high-intensity exercise training primes the transcriptome for the demands of high-intensity exercise. Results An extensive set of genes was observed to be significantly differentially regulated in response to a single bout of high-intensity exercise in the untrained cohort (3241 genes) and following multiple bouts of high-intensity exercise training over a six-month period (3405 genes). Approximately one-third of these genes (1025) and several biological processes related to energy metabolism were common to both the exercise and training responses. We then developed a novel network-based computational analysis pipeline to test the hypothesis that these transcriptional changes also influence the contextual molecular interactome and its dynamics in response to exercise and training. The contextual network analysis identified several important hub genes, including the autophagosomal-related gene GABARAPL1, and dynamic functional modules, including those enriched for mitochondrial respiratory chain complexes I and V, that were differentially regulated and had their putative interactions ‘re-wired’ in the exercise and/or training responses. Conclusion Here we have generated for the first time, a comprehensive set of genes that are differentially expressed in Thoroughbred skeletal muscle in response to both exercise and training. These data indicate that consecutive bouts of high-intensity exercise result in a priming of the skeletal muscle transcriptome for the demands of the next exercise bout. Furthermore, this may also lead to an extensive ‘re-wiring’ of the molecular interactome in both exercise and training and include key genes and functional modules related to autophagy and the mitochondrion
    corecore