14,685 research outputs found
Survey of multi-function display and control technology
The NASA orbiter spacecraft incorporates a complex array of systems, displays and controls. The incorporation of discrete dedicated controls into a multi-function display and control system (MFDCS) offers the potential for savings in weight, power, panel space and crew training time. The technology applicable to the development of a MFDCS for orbiter application is surveyed. Technology thought to be applicable presently or in the next five years is highlighted. Areas discussed include display media, data handling and processing, controls and operator interactions and the human factors considerations which are involved in a MFDCS design. Several examples of applicable MFDCS technology are described
Development of preliminary design concept for a multifunction display and control system for the Orbiter crew station. Task 4: Design concept recommendation
Application of multifunction display and control systems to the NASA Orbiter spacecraft offers the potential for reducing crew workload and improving the presentation of system status and operational data to the crew. A design concept is presented for the application of a multifunction display and control system (MFDCS) to the Orbital Maneuvering System and Electrical Power Distribution and Control System on the Orbiter spacecraft. The MFDCS would provide the capability for automation of procedures, fault prioritization and software reconfiguration of the MFDCS data base. The MFDCS would operate as a stand-alone processor to minimize the impact on the current Orbiter software. Supervisory crew command of all current functions would be retained through the use of several operating modes in the system. Both the design concept and the processes followed in defining the concept are described
Application of multi-function display and control technology
The NASA orbiter spacecraft incorporates a complex array of systems, displays, and controls. The incorporation of discrete dedicated controls into a multifunction display and control system (MFDCS) offers the potential for savings in weight, power, panel space, and crew training time. Technology identified as applicable to a MFDCS is applied to the orbiter orbital maneuvering system (OMS) and the electrical power distribution and control system (EPDCS) to derive concepts for a MFDCS design. Several concepts of varying degrees of performance and complexity are discussed and a suggested concept for further development is presented in greater detail. Both the hardware and software aspects and the human factors considerations of the designs are included
Development of preliminary design concept for multifunction display and control system for Orbiter crew station. Task 3: Concept analysis
The access schema developed to access both individual switch functions as well as automated or semiautomated procedures for the orbital maneuvering system and electrical power and distribution and control system discussed and the operation of the system is described. Feasibility tests and analyses used to define display parameters and to select applicable hardware choices for use in such a system are presented and the results are discussed
Procedures for estimating the effects of design and operational characteristics of jet aircraft on ground noise
Estimation procedures for effect of design and flight characteristics of jets on ground nois
DEKAS - An evolutionary case-based reasoning system to support protection scheme design
This paper describes a decision support system being developed in conjunction with two UK utility companies to aid the design of electrical power transmission protection systems. A brief overview of the application domain is provided, followed by a description of the work carried out to date concerning the development and deployment of the Design Engineering Knowledge Application System (DEKAS). The paper then discusses the provision of intelligent decision support to the design engineer through the application of case-based reasoning (CBR). The key benefits from this will be outlined in conjunction with a relevant case study
Multi-centre retrospective study of long-term outcomes following traumatic elbow luxation in 37 dogs
First-Order Vortex Lattice Melting and Magnetization of YBaCuO$_{7-\delta}
We present the first non-mean-field calculation of the magnetization
of YBaCuO both above and below the flux-lattice melting
temperature . The results are in good agreement with experiment as a
function of transverse applied field . The effects of fluctuations in both
order parameter and magnetic induction are included in the
Ginzburg-Landau free energy functional: fluctuates within the
lowest Landau level in each layer, while fluctuates uniformly according to
the appropriate Boltzmann factor. The second derivative is predicted to be negative throughout the vortex liquid state and
positive in the solid state. The discontinuities in entropy and magnetization
at melting are calculated to be per flux line per layer and
~emu~cm at a field of 50 kOe.Comment: 11 pages, 4 PostScript figures in one uuencoded fil
Automotive Stirling engine development program
This is the ninth Semiannual Technical Progress Report prepared under the Automotive Stirling Engine Development Program. It covers the twenty-eighth and twenty-ninth quarters of activity after award of the contract. Quarterly Technical Progress Reports related program activities from the first through the thirteenth quarters; thereafter, reporting was changed to a Semiannual format. This report summarizes the study of higher-power kinematic Stirling engines for transportation use, development testing of Mod I Stirling engines, and component development activities. Component development testing included successful conical fuel nozzle testing and functional checkout of Mod II controls and auxiliaries on Mod I engine test beds. Overall program philosophy is outlined and data and test results are presented
- …