1,107 research outputs found
Phylogeny and taxonomy of the Ophiostoma piceae complex and the Dutch elm disease fungi
The Ophiostoma piceae complex forms a monophyletic group of insect-dispersed pyrenomycetes with synnemata (Pesotum) and micronematous (Sporothrix) synanamorphs. Other species of Ophios-toma outside of the O. piceae complex that form syn-nemata lack the Sporothrix state. The nine recognized species within the 0. piceae complex are delimited by synnema morphology, growth rate at 32 C, mating reactions and sequences of the internal transcribed spacer (ITS) region of the rDNA operon. Phyloge-netic analysis of the ITS region suggests two major clades in the complex, one that causes bluestain in primarily coniferous hosts and the other on primarily hardwood hosts. In the coniferous group are O. pi-ceae, O. canum, O. floccosum and the recently de-scribed O. setosum (anamorph Pesotum cupulatum sp. nov.). In the hardwood group are O. querci, O. caton-ianum, and the Dutch elm disease fungi: O. ulmi, O. novo-ulmi and O. himal-ulmi. Restriction fragment length polymorphisms of the ITS region are shown to be a convenient diagnostic tool for delimiting these species
I\u27ll Do The Same For You
https://digitalcommons.library.umaine.edu/mmb-vp/3516/thumbnail.jp
Population dynamics of house mice in Queensland grain-growing areas
Context. Irregular plagues of house mice cause high production losses in grain crops in Australia. If plagues can be forecast through broad-scale monitoring or model-based prediction, then mice can be proactively controlled by poison baiting.
Aims. To predict mouse plagues in grain crops in Queensland and assess the value of broad-scale monitoring.
Methods. Regular trapping of mice at the same sites on the Darling Downs in southern Queensland has been undertaken
since 1974. This provides an index of abundance over time that can be related to rainfall, crop yield, winter temperature and past mouse abundance. Other sites have been trapped over a shorter time period elsewhere on the Darling Downs and in central Queensland, allowing a comparison of mouse population dynamics and cross-validation of models predicting mouse abundance.
Key results. On the regularly trapped 32-km transect on the Darling Downs, damaging mouse densities occur in 50% of
years and a plague in 25% of years, with no detectable increase in mean monthly mouse abundance over the past 35 years. High mouse abundance on this transect is not consistently matched by high abundance in the broader area. Annual maximum mouse abundance in autumn–winter can be predicted (R2 = 57%) from spring mouse abundance and autumn–winter rainfall in the previous year. In central Queensland, mouse dynamics contrast with those on the Darling Downs and lack the distinct annual cycle, with peak abundance occurring in any month outside early spring.Onaverage, damaging mouse densities occur
in 1 in 3 years and a plague occurs in 1 in 7 years. The dynamics of mouse populations on two transects ~70 km apart were rarely synchronous. Autumn–winter rainfall can indicate mouse abundance in some seasons (R2 = ~52%).
Conclusion. Early warning of mouse plague formation in Queensland grain crops from regional models should trigger
farm-based monitoring. This can be incorporated with rainfall into a simple model predicting future abundance that will determine any need for mouse control.
Implications. A model-based warning of a possible mouse plague can highlight the need for local monitoring of mouse
activity, which in turn could trigger poison baiting to prevent further mouse build-up
Strong field ionization to multiple electronic states in water
High harmonic spectra show that laser-induced strong field ionization of
water has a significant contribution from an inner-valence orbital. Our
experiment uses the ratio of H2O and D2O high harmonic yields to isolate the
characteristic nuclear motion of the molecular ionic states. The nuclear motion
initiated via ionization of the highest occupied molecular orbital (HOMO) is
small and is expected to lead to similar harmonic yields for the two isotopes.
In contrast, ionization of the second least bound orbital (HOMO-1) exhibits
itself via a strong bending motion which creates a significant isotope effect.
We elaborate on this interpretation by simulating strong field ionization and
high harmonic generation from the water isotopes using the time-dependent
Schr\"odinger equation. We expect that this isotope marking scheme for probing
excited ionic states in strong field processes can be generalized to other
molecules
Subtumoral analysis of PRINT nanoparticle distribution reveals targeting variation based on cellular and particle properties
AbstractThe biological activity of nanoparticle-directed therapies critically depends on cellular targeting. We examined the subtumoral fate of Particle Replication in Non-Wetting Templates (PRINT) nanoparticles in a xenografted melanoma tumor model by multi-color flow cytometry and in vivo confocal tumor imaging. These approaches were compared with the typical method of whole-organ quantification by radiolabeling. In contrast to radioactivity based detection which demonstrated a linear dose-dependent accumulation in the organ, flow cytometry revealed that particle association with cancer cells became dose-independent with increased particle doses and that the majority of the nanoparticles in the tumor were associated with cancer cells despite a low fractional association. In vivo imaging demonstrated an inverse relationship between tumor cell association and other immune cells, likely macrophages. Finally, variation in particle size nonuniformly affected subtumoral association. This study demonstrates the importance of subtumoral targeting when assessing nanoparticle activity within tumors.From the Clinical EditorParticle Replication in Non-Wetting Templates (PRINT) technology allows the production of nanoparticles with uniform size. The authors in the study utilized PRINT-produced nanoparticles to investigate specific tumor uptake by multi-color flow cytometry and in vivo confocal tumor imaging. This approach allowed further in-depth correlation between nanoparticle properties and tumor cells and should improve future design
Multicentre validation of the bedside paediatric early warning system score: a severity of illness score to detect evolving critical illness in hospitalised children
Abstract
Introduction
The timely provision of critical care to hospitalised patients at risk for cardiopulmonary arrest is contingent upon identification and referral by frontline providers. Current approaches require improvement. In a single-centre study, we developed the Bedside Paediatric Early Warning System (Bedside PEWS) score to identify patients at risk. The objective of this study was to validate the Bedside PEWS score in a large patient population at multiple hospitals.
Methods
We performed an international, multicentre, case-control study of children admitted to hospital inpatient units with no limitations on care. Case patients had experienced a clinical deterioration event involving either an immediate call to a resuscitation team or urgent admission to a paediatric intensive care unit. Control patients had no events. The scores ranged from 0 to 26 and were assessed in the 24 hours prior to the clinical deterioration event. Score performance was assessed using the area under the receiver operating characteristic (AUCROC) curve by comparison with the retrospective rating of nurses and the temporal progression of scores in case patients.
Results
A total of 2,074 patients were evaluated at 4 participating hospitals. The median (interquartile range) maximum Bedside PEWS scores for the 12 hours ending 1 hour before the clinical deterioration event were 8 (5 to 12) in case patients and 2 (1 to 4) in control patients (P < 0.0001). The AUCROC curve (95% confidence interval) was 0.87 (0.85 to 0.89). In case patients, mean scores were 5.3 at 20 to 24 hours and 8.4 at 0 to 4 hours before the event (P < 0.0001). The AUCROC curve (95% CI) of the retrospective nurse ratings was 0.83 (0.81 to 0.86). This was significantly lower than that of the Bedside PEWS score (P < 0.0001).
Conclusions
The Bedside PEWS score identified children at risk for cardiopulmonary arrest. Scores were elevated and continued to increase in the 24 hours before the clinical deterioration event. Prospective clinical evaluation is needed to determine whether this score will improve the quality of care and patient outcomes
X-box binding protein 1 induces the expression of the lytic cycle transactivator of Kaposi's sarcoma-associated herpesvirus but not Epstein–Barr virus in co-infected primary effusion lymphoma
Cells of primary effusion lymphoma (PEL), a B-cell non-Hodgkin's lymphoma, are latently infected by Kaposi's sarcoma-associated herpesvirus (KSHV), with about 80 % of PEL also co-infected with Epstein–Barr virus (EBV). Both viruses can be reactivated into their lytic replication cycle in PEL by chemical inducers. However, simultaneous activation of both lytic cascades leads to mutual lytic cycle co-repression. The plasma cell-differentiation factor X-box binding protein 1 (XBP-1) transactivates the KSHV immediate–early promoter leading to the production of the replication and transcription activator protein (RTA), and reactivation of KSHV from latency. XBP-1 has been reported to act similarly on the EBV immediate–early promoter Zp, leading to the production of the lytic-cycle transactivator protein BZLF1. Here we show that activated B-cell terminal-differentiation transcription factor X-box binding protein 1 (XBP-1s) does not induce EBV BZLF1 and BRLF1 expression in PEL and BL cell lines, despite inducing lytic reactivation of KSHV in PEL. We show that XBP-1s transactivates the KSHV RTA promoter but does not transactivate the EBV BZLF1 promoter in non-B-cells by using a luciferase assay. Co-expression of activated protein kinase D, which can phosphorylate and inactivate class II histone deacetylases (HDACs), does not rescue XBP-1 activity on Zp nor does it induce BZLF1 and BRLF1 expression in PEL. Finally, chemical inducers of KSHV and EBV lytic replication in PEL, including HDAC inhibitors, do not lead to XBP-1 activation. We conclude that XBP-1 specifically reactivates the KSHV lytic cycle in dually infected PELs
The Information Content of Mandatory Disclosures
The information quality of mandatory financial reporting depends on two factors: (1) Are standards appropriate to produce financial statements that provide investors with sufficient information? (2) Is compliance to standards enforced by appropriate institutions? This paper addresses the question if firms should be able to create hidden reserves as an example for the effect of standards on information quality. The analysis shows that rational investors are able to correctly decipher financial statements independent of the standards in use. The question of sufficient enforcement proves to have a deeper impact on the quality of information
A long-term record of early to mid-Paleozoic marine redox change
The extent to which Paleozoic oceans differed from Neoproterozoic oceans and the causal relationship between biological evolution and changing environmental conditions are heavily debated. Here, we report a nearly continuous record of seafloor redox change from the deep-water upper Cambrian to Middle Devonian Road River Group of Yukon, Canada. Bottom waters were largely anoxic in the Richardson trough during the entirety of Road River Group deposition, while independent evidence from iron speciation and Mo/U ratios show that the biogeochemical nature of anoxia changed through time. Both in Yukon and globally, Ordovician through Early Devonian anoxic waters were broadly ferruginous (nonsulfidic), with a transition toward more euxinic (sulfidic) conditions in the mid–Early Devonian (Pragian), coincident with the early diversification of vascular plants and disappearance of graptolites. This ~80-million-year interval of the Paleozoic characterized by widespread ferruginous bottom waters represents a persistence of Neoproterozoic-like marine redox conditions well into the Phanerozoic
- …