3,732 research outputs found

    New Signatures of Squarks

    Get PDF
    When the gluino is light and long lived, missing energy is a poor signature for both squarks and gluinos. Instead, SqSq∗S_q S_q^* production in e+e−e^+ e^- and ppˉp \bar{p} collisions characteristically results in events with ≄4\ge 4 jets. Methods are proposed for deciding whether an observed excess of 4-jet events is due to SqSq∗S_q S_q^* production. The recent report by ALEPH of observation of 14 4-jet events when 7 were expected is discussed.Comment: 12/22/95 version (put on net 1/1/96) elaborates remarks on squarks as possible source of ALEPH 4-jet excess and adds a ref. latex, 10 pages (including 1 figure), uufile

    Recalculation of Proton Compton Scattering in Perturbative QCD

    Get PDF
    At very high energy and wide angles, Compton scattering on the proton (gamma p -> gamma p) is described by perturbative QCD. The perturbative QCD calculation has been performed several times previously, at leading twist and at leading order in alpha_s, with mutually inconsistent results, even when the same light-cone distribution amplitudes have been employed. We have recalculated the helicity amplitudes for this process, using contour deformations to evaluate the singular integrals over the light-cone momentum fractions. We do not obtain complete agreement with any previous result. Our results are closest to those of the most recent previous computation, differing significantly for just one of the three independent helicity amplitudes, and only for backward scattering angles. We present results for the unpolarized cross section, and for three different polarization asymmetries. We compare the perturbative QCD predictions for these observables with those of the handbag and diquark models. In order to reduce uncertainties associated with alpha_s and the three-quark wave function normalization, we have normalized the Compton cross section using the proton elastic form factor. The theoretical predictions for this ratio are about an order of magnitude below existing experimental data.Comment: Latex, 23 pages, 13 figures. Checked numerical integration one more way; added results for one more proton distribution amplitude; a few other minor changes. Version to appear in Phys. Rev.

    Statistical Matrix for Electroweak Baryogenesis

    Full text link
    In electroweak baryogenesis, a domain wall between the spontaneously broken and unbroken phases acts as a separator of baryon (or lepton) number, generating a baryon asymmetry in the universe. If the wall is thin relative to plasma mean free paths, one computes baryon current into the broken phase by determining the quantum mechanical transmission of plasma components in the potential of the spatially changing Higgs VEV. We show that baryon current can also be obtained using a statistical density operator. This new formulation of the problem provides a consistent framework for studying the influence of quasiparticle lifetimes on baryon current. We show that when the plasma has no self-interactions, familiar results are reproduced. When plasma self-interactions are included, the baryon current into the broken phase is related to an imaginary time temperature Green's function.Comment: 20 pages, no figures, Late

    Experiments to Find or Exclude a Long-Lived, Light Gluino

    Get PDF
    Gluinos in the mass range ~1 1/2 - 3 1/2 GeV are absolutely excluded. Lighter gluinos are allowed, except for certain ranges of lifetime. Only small parts of the mass-lifetime parameter space are excluded for larger masses unless the lifetime is shorter than ~ 2 10^{-11} (m_{gluino}/ GeV) sec. Refined mass and lifetime estimates for R-hadrons are given, present direct and indirect experimental constraints are reviewed, and experiments to find or definitively exclude these possibilities are suggested.Comment: 27 pp, latex with 1 uufiled figure, RU-94-35. New version amplifies discussion of some points and corresponds to version for Phys. Rev.

    Wide-angle elastic scattering and color randomization

    Get PDF
    Baryon-baryon elastic scattering is considered in the independent scattering (Landshoff) mechanism. It is suggested that for scattering at moderate energies, direct and interchange quark channels contribute with equal color coefficients because the quark color is randomized by soft gluon exchange during the hadronization stage. With this assumption, it is shown that the ratio of cross sections Rp‟p/ppR_{\overline{p} p/ p p} at CM angle Ξ=900\theta = 90^0 decreases from a high energy value of R_{\pbar p / pp} \approx 1/2.7, down to R_{\pbar p / pp} \approx 1/28, compatible with experimental data at moderate energies. This sizable fall in the ratio seems to be characteristic of the Landshoff mechanism, in which changes at the quark level have a strong effect precisely because the hadronic process occurs via multiple quark scatterings. The effect of color randomization on the angular distribution of proton-proton elastic scattering and the cross section ratio Rnp/ppR_{np/pp} is also discussed.Comment: 18 pages, latex2e, 4 uuencoded figures, include

    Deeply Virtual Compton Scattering

    Get PDF
    We study in QCD the physics of deeply-virtual Compton scattering (DVCS)---the virtual Compton process in the large s and small t kinematic region. We show that DVCS can probe a new type of off-forward parton distributions. We derive an Altarelli-Parisi type of evolution equations for these distributions. We also derive their sum rules in terms of nucleon form-factors of the twist-two quark and gluon operators. In particular, we find that the second sum rule is related to fractions of the nucleon spin carried separately by quarks and gluons. We estimate the cross section for DVCS and compare it with the accompanying Bethe-Heitler process at CEBAF and HERMES kinematics.Comment: 20 pages, 2 figures, replaced with the version to appear in Phys. Rev.

    LIGHT PHOTINOS AS DARK MATTER

    Get PDF
    There are good reasons to consider models of low-energy supersymmetry with very light photinos and gluinos. In a wide class of models the lightest RR-odd, color-singlet state containing a gluino, the 0˚\r0, has a mass in the 1-2 GeV range and the slightly lighter photino, \pho, would survive as the relic RR-odd species. For the light photino masses considered here, previous calculations resulted in an unacceptable photino relic abundance. But we point out that processes other than photino self-annihilation determine the relic abundance when the photino and R0R^0 are close in mass. Including \r0\longleftrightarrow\pho processes, we find that the photino relic abundance is most sensitive to the 0˚\r0-to-\pho mass ratio, and within model uncertainties, a critical density in photinos may be obtained for an 0˚\r0-to-\pho mass ratio in the range 1.2 to 2.2. We propose photinos in the mass range of 500 MeV to 1.6 GeV as a dark matter candidate, and discuss a strategy to test the hypothesis.Comment: uuencoded compressed tar file containing 32 page LaTeX file and eight postscript figure

    Electroweak Baryogenesis and Standard Model CP Violation

    Full text link
    We analyze the mechanism of electroweak baryogenesis proposed by Farrar and Shaposhnikov in which the phase of the CKM mixing matrix is the only source of CPCP violation. This mechanism is based on a phase separation of baryons via the scattering of quasiparticles by the wall of an expanding bubble produced at the electroweak phase transition. In agreement with the recent work of Gavela, Hern\'andez, Orloff and P\`ene, we conclude that QCD damping effects reduce the asymmetry produced to a negligible amount. We interpret the damping as quantum decoherence. We compute the asymmetry analytically. Our analysis reflects the observation that only a thin, outer layer of the bubble contributes to the coherent scattering of the quasiparticles. The generality of our arguments rules out any mechanism of electroweak baryogenesis that does not make use of a new source of CPCP violation.Comment: 36 pages, in LaTeX, one LaTeX figure included, 5 others available upon request, SLAC-PUB-647

    Correlation between Compact Radio Quasars and Ultra-High Energy Cosmic Rays

    Get PDF
    Some proposals to account for the highest energy cosmic rays predict that they should point to their sources. We study the five highest energy events (E>10^20 eV) and find they are all aligned with compact, radio-loud quasars. The probability that these alignments are coincidental is 0.005, given the accuracy of the position measurements and the rarity of such sources. The source quasars have redshifts between 0.3 and 2.2. If the correlation pointed out here is confirmed by further data, the primary must be a new hadron or one produced by a novel mechanism.Comment: 8 pages, 3 tables, revtex. with some versions of latex it's necessary to break out the tables and latex them separately using article.sty rather than revtex.st

    On U(1)-charged domain walls

    Full text link
    A classical field system of two interacting fields -- a real Higgs field and a complex scalar field -- is considered. It is shown that in such field system a non-trivial solution exists, which is U(1) charged topological kink. Some questions of stability of the obtained solution are discussed. An improved variational procedure for searching of topological U(1) charged solutions is given.Comment: 16 pages, LaTeX, 4 PostScript figure
    • 

    corecore