75 research outputs found
Early intervention for lactate dehydrogenase elevation improves clinical outcomes in patients with the HeartMate II left ventricular assist device: Insights from the PREVENT study
BACKGROUND: Hemolysis, assessed by elevated serum lactate dehydrogenase (LDH), is strongly associated with HeartMate II pump thrombosis (PT). However, it is unknown whether early intervention for elevated LDH circumvents the risk of serious PT requiring pump exchange. We sought to evaluate the relationship between elevated LDH and clinical outcomes, the effectiveness of early medical intervention, and risk factors for elevated LDH.
METHODS: We studied 268 patients in the prospective, multicenter PREVENT study who had 2 or more LDH measurements at ≥30 days post-implant. Elevated LDH was defined as LDH ≥2.5× upper limit of normal (ULN) for 2 consecutive measurements.
RESULTS: Fourteen percent of patients had elevated LDH. Stroke-free survival at 6 months was lower in patients with elevated LDH vs patients with normal LDH (83 ± 6% vs 93 ± 2%, p = 0.035). Elevated LDH resolved without intervention in 19% of patients, with intensified medical therapy in 43% and required surgical intervention in 38%. For patients receiving only medical therapy, survival was 94 ± 6% at 6 months post-treatment. In this subgroup, resolution of symptoms with intensified medical therapy was sustained in 15 of 16 patients, with PT occurring in 1 patient at 171 days after initial treatment for elevated LDH (202 days post-implant). Early medical intervention at moderately elevated LDH (2.5× to 3.2× ULN), as compared with higher levels (>3.2× ULN), led to more sustained resolution of symptoms without subsequent PT or need for surgical intervention (91% vs 26% at 6 months post-treatment, p = 0.002).
CONCLUSIONS: Early medical intervention can successfully resolve moderate LDH elevations (2.5× to 3.2× ULN) with a low incidence of death or PT at 6 months post-treatment
Comprehensive molecular and clinical characterization of NUP98 fusions in pediatric acute myeloid leukemia
NUP98 fusions comprise a family of rare recurrent alterations in AML, associated with adverse outcomes. In order to define the underlying biology and clinical implications of this family of fusions, we performed comprehensive transcriptome, epigenome, and immunophenotypic profiling of 2,235 children and young adults with AML and identified 160 NUP98 rearrangements (7.2%), including 108 NUP98-NSD1 (4.8%), 32 NUP98-KDM5A (1.4%) and 20 NUP98-X cases (0.9%) with 13 different fusion partners. Fusion partners defined disease characteristics and biology; patients with NUP98-NSD1 or NUP98-KDM5A had distinct immunophenotypic, transcriptomic, and epigenomic profiles. Unlike the two most prevalent NUP98 fusions, NUP98-X variants are typically not cryptic. Furthermore, NUP98-X cases are associated with WT1 mutations, and have epigenomic profiles that resemble either NUP98-NSD1 or NUP98-KDM5A. Cooperating FLT3-ITD and WT1 mutations define NUP98-NSD1, and chromosome 13 aberrations are highly enriched in NUP98-KDM5A. Importantly, we demonstrate that NUP98 fusions portend dismal overall survival, with the noteworthy exception of patients bearing abnormal chromosome 13 (clinicaltrials gov. Identifiers: NCT00002798, NCT00070174, NCT00372593, NCT01371981).</p
Comprehensive molecular and clinical characterization of NUP98 fusions in pediatric acute myeloid leukemia
NUP98 fusions comprise a family of rare recurrent alterations in AML, associated with adverse outcomes. In order to define the underlying biology and clinical implications of this family of fusions, we performed comprehensive transcriptome, epigenome, and immunophenotypic profiling of 2,235 children and young adults with AML and identified 160 NUP98 rearrangements (7.2%), including 108 NUP98-NSD1 (4.8%), 32 NUP98-KDM5A (1.4%) and 20 NUP98-X cases (0.9%) with 13 different fusion partners. Fusion partners defined disease characteristics and biology; patients with NUP98-NSD1 or NUP98-KDM5A had distinct immunophenotypic, transcriptomic, and epigenomic profiles. Unlike the two most prevalent NUP98 fusions, NUP98-X variants are typically not cryptic. Furthermore, NUP98-X cases are associated with WT1 mutations, and have epigenomic profiles that resemble either NUP98-NSD1 or NUP98-KDM5A. Cooperating FLT3-ITD and WT1 mutations define NUP98-NSD1, and chromosome 13 aberrations are highly enriched in NUP98-KDM5A. Importantly, we demonstrate that NUP98 fusions portend dismal overall survival, with the noteworthy exception of patients bearing abnormal chromosome 13 (clinicaltrials gov. Identifiers: NCT00002798, NCT00070174, NCT00372593, NCT01371981).</p
L-leucine improves anemia and growth in patients with transfusion-dependent Diamond Blackfan anemia: Results from a multicenter pilot phase I/II study from the Diamond Blackfan Anemia Registry
Background: Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by anemia, short stature, congenital anomalies, and cancer predisposition. Most cases are due to mutations in genes encoding ribosomal proteins (RP) leading to RP haploinsufficiency. Effective treatments for the anemia of DBA include chronic red cell transfusions, long-term corticosteroid therapy, or hematopoietic stem cell transplantation. In a small patient series and in animal models, there have been hematologic responses to L-leucine with amelioration of anemia. The study objectives of this clinical trial were to determine feasibility, safety, and efficacy of L-leucine in transfusion-dependent patients with DBA.
Procedure: Patients ≥2 years of age received L-leucine 700 mg/m2 orally three times daily for nine months to determine a hematologic response and any improvement in growth (NCT01362595).
Results: This multicenter, phase I/II study enrolled 55 subjects; 43 were evaluable. There were 21 males; the median age at enrollment was 10.4 years (range, 2.5-46.1 years). No significant adverse events were attributable to L-leucine. Two subjects had a complete erythroid response and five had a partial response. Nine of 25, and 11 of 25, subjects experienced a positive weight and height percentile change, respectively, at the end of therapy.
Conclusions: L-leucine is safe, resulted in an erythroid response in 16% of subjects with DBA, and led to an increase in weight and linear growth velocity in 36% and 44% of evaluable subjects, respectively. Further studies will be critical to understand the role of L-leucine in the management of patients with DBA
Genotype-phenotype association and variant characterization in Diamond-Blackfan anemia caused by pathogenic variants in <i>RPL35A</i>
Diamond Blackfan anemia (DBA) is predominantly an autosomal dominant inherited red cell aplasia primarily caused by pathogenic germline variants in ribosomal protein genes. DBA due to pathogenic RPL35A variants has been associated with large 3q29 deletions and phenotypes not common in DBA. We conducted a multi-institutional genotype-phenotype study of 45 patients with DBA associated with pathogenic RPL35A germline variants and curated the variant data on 21 additional cases from the literature. Genotype-phenotype analyses were conducted comparing patients with large deletions versus all other pathogenic variants in RPL35A. Twenty-two of the 45 cases had large deletions in RPL35A. After adjusting for multiple tests, a statistically significant association was observed between patients with a large deletion and steroid-resistant anemia, neutropenia, craniofacial abnormalities, chronic gastrointestinal problems, and intellectual disabilities (p<0.01) compared with all other pathogenic variants. Non-large deletion pathogenic variants were spread across RPL35A with no apparent hot spot and 56% of the individual family variants were observed more than once. In this, the largest known study of DBA patients with pathogenic RPL35A variants, we determined that patients with large deletions have a more severe phenotype that is clinically different from those with non-large deletion variants. Genes of interest also deleted in the 3q29 region that could be associated with some of these phenotypic features include LMLN and IQCG. Management of DBA due to large RPL35A deletions may be challenging due to complex problems and require comprehensive assessments by multiple specialists including immunologic, gastrointestinal, and developmental evaluations to provide optimal multidisciplinary care
Molecular and phenotypic diversity of <I>CBL</I>-mutated juvenile myelomonocytic leukemia
Mutations in the CBL gene were first identified in adults with various myeloid malignancies. Some patients with juvenile myelomonocytic leukemia (JMML) were also noted to harbor mutations in CBL, but were found to have generally less aggressive disease courses compared to patients with other forms of Ras pathway-mutant JMML. Importantly, and in contrast to most reports in adults, the majority of CBL mutations in JMML patients are germline with acquired uniparental disomy occurring in affected marrow cells. Here, we systematically studied a large cohort of 33 JMML patients with CBL mutations and found that this disease is highly diverse in presentation and overall outcome. Moreover, we discovered somatically acquired CBL mutations in 15% of pediatric patients who presented with more aggressive disease. Neither clinical features nor methylation profiling were able to distinguish patients with somatic CBL mutations from those with germline CBL mutations, highlighting the need for germline testing. Overall, we demonstrate that disease courses are quite heterogeneous even among patients with germline CBL mutations. Prospective clinical trials are warranted to find ideal treatment strategies for this diverse cohort of patients
Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A
The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group
Building a tuberculosis-free world: The Lancet Commission on tuberculosis
___Key messages___
The Commission recommends five priority investments to achieve a tuberculosis-free world within a generation. These investments are designed to fulfil the mandate of the UN High Level Meeting on tuberculosis. In addition, they answer
- …